
Improving image classifiers for small datasets
by learning rate adaptations

Sourav Mishra
The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo
sourav@ay-lab.org

Toshihiko Yamasaki
The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo
yamasaki@ay-lab.org

Hideaki Imaizumi
exMedio Inc.,

3-5-1 Kojimachi, Chiyoda-ku, Tokyo
imaq@exmed.io

Abstract

Our paper introduces an efficient combination of es-
tablished techniques to improve classifier performance,
in terms of accuracy and training time. We achieve
two-fold to ten-fold speedup in nearing state of the art
accuracy, over different model architectures, by dynam-
ically tuning the learning rate. We find it especially
beneficial in the case of small datasets, where reliabil-
ity of machine reasoning is lower. We validate our ap-
proach by comparing our method versus vanilla train-
ing on CIFAR-10. We also demonstrate its practical
viability by implementing on an unbalanced corpus of
diagnostic images.

1 Introduction

Image classification via deep learning has seen rapid
improvements in the last few years. First introduced as
a visual recognition challenge, its scope has permeated
from industrial applications to medical uses [1]. Var-
ious new architectures have been proposed since the
introduction of AlexNet in 2012 [2], such as ResNet,
DenseNet and Inception [3, 4, 5]. These architectures
have become the mainstay in most computer vision ap-
plications, as per current literature.

In addition to emergence of new architectures, we
have also observed a steady increase in the accuracy
of classification reported on standard datasets. How-
ever, this improvement cannot be solely attributed to
the architectures alone. Learning paradigms such as
newer loss functions, optimization methods such as
Dropout [6], and DropBlock [7] along with better pre-
processing routines have contributed to higher accu-
racy. However, some bottlenecks still remain. Con-
ventional methods of training models require a large
amount of data, often augmented or imputed from the
original dataset to make it balanced. The phase of
training also happens to be the longest task in the deep
learning process. With the advent of cloud comput-
ing, much of the machine learning tasks have shifted

to portals such as Amazon Web Services and Microsoft
Azure. Larger architectures usually imply longer run-
ning tasks translating to higher billed costs. This is
of paramount importance to research groups or star-
tups working on limited time and financial resources
to deliver outcomes.

To alleviate this training performance bottleneck, a
large number of workarounds have been proposed over
the years, albeit with lesser attention. In this paper, we
have proposed an organic combination of existing tech-
niques and some derivative ideas, focused on the hyper-
parameter of learning rate. We allow it to adapt pre-
dictably over the training phase to improve time (mea-
sured as wall time) as well as accuracy (measured as
validation accuracy). Our empirical evaluations have
led us to conclude that learning rate adaptation is an
under-exploited resource in making a difference on the
overall model performance.

In this paper we have presented the following:

• We propose a scheme of reducing the training time
and increasing validation accuracy by means of co-
sine rate annealing, annealing cycle length adap-
tation and differential learning rates.

• We benchmark our scheme against conventional
training paradigms, using CIFAR-10 dataset and
quantify the speedup factor.

• We demonstrate the viability of this method on a
corpus of dermatological diagnostic images which
has an unbalanced nature.

Our paper is organized as follows. Following this
Introduction we elaborate on the Methods in Section 2,
describing the modus operandi of baseline determina-
tion, modified scheme and benchmarking. We present
the results in Section 3 and demonstrate a practical
application in Section 4. We conclude with Section 5
containing discussion & inferences drawn.

16th International Conference on Machine Vision Applications (MVA)
National Olympics Memorial Youth Center, Tokyo, Japan, May 27-31, 2019.

© 2019 MVA Organization

04-05



2 Methods

2.1 Baseline Preparation

For computing the baseline, we chose multi-class
classification on the CIFAR-10 dataset [8]. Our ratio-
nale of this choice was to select a data corpus reported
commonly in contemporary literature, exhibiting suffi-
cient variety and yet smaller than ImageNet or CIFAR-
100 [1]. Our classifier was built on PyTorch v0.4 frame-
work with commonly recommended practices such as
dynamic augmentation, early stopping and an option
to resume training with a different (but fixed) learning
rate. Pretrained ResNet-34, ResNet-50, ResNet-101,
ResNet-152 and DenseNet-161 were chosen as the can-
didate architectures; a single GPU (NVIDIA Titan Xp
12 GB HBM2) was utilized for all the measurements.
The batch size was set at 32.

Prior to model learning, we normalized the data
with the recommended mean (0.4914, 0.4822, 0.4465)
and standard deviation (0.2023, 0.1994, 0.2010). The
images were split in ratio of 5:1 into training and valida-
tion set. We performed dynamic in-memory augmen-
tation by crop, horizontal & vertical flips. Addition-
ally we introduced other augmentation methods such
as random-zoom by the imgaug package from Python
repository.

All the models were trained to at least 90% valida-
tion accuracy for fair comparison. The training was
commended with learning rate α = 0.01 and restarted
manually with lower value (α = 0.001), whenever early
stopping forced the training to halt. Setting sufficient
number of epochs to train was chosen based on prior
experience. The accuracy of models and time to train
are elucidated in Table 1.

2.2 Finding Initial Learning Rate

To optimize training performance, we focused on
keeping learning rate α suitable throughout the model
learning. Conventional wisdom dictates that learning
rates should monotonically decrease during the course
of training. However, starting with a value significantly
smaller than theoretical optimum could lead to cost
function never converging towards global minimum;
similarly a larger value will lead to divergence or over-
fitting. It led to us to the pertinent question of deter-
mining an optimal initial learning rate. To accomplish
this objective, we introduced an initial rate finder de-
scribed by Smith et al. [9]. The implementation used
several mini-batches with gradually increasing values of
α, until the loss computed at end of each batch started
decreasing dramatically. Finding the rate of change of
loss, we could zero down to a good learning rate to be-
gin. Figures 1 and 2 illustrate the learning rate range
test for DenseNet-161.

0 20 40 60 80 100 120 140 160
iterations

0.0

0.2

0.4

0.6

0.8

1.0

1.2

le
ar
ni
ng

 ra
te

Figure 1: Determination of most suitable initial learn-
ing rate. The learning rate is systematically increased
over a large range to determine where the losses start
reducing.

10−4 10−3 10−2 10−1 100

learning rate (log scale)

2.0

2.2

2.4

2.6

2.8

3.0
va

lid
at
io
n 
lo
ss

Figure 2: Plot of the losses measured over test mini-
batches to determine the optimum initial learning rate.

2.3 Cosine Rate Annealing

Following determination of the best initial rate, we
chose to train the network with transforms similar to
our baseline measurement. The differences we intro-
duced at this stage were to employ L2 regularization
and running a pass through our data to pre-compute
activation values for the final layer, keeping all other
layers frozen. As the first step, we froze all layers ex-
cept the final layer to retain the complex features from
ImageNet training. Initial shaping of the final layer
promised performance advantages. Rather than keep-
ing the learning rate fixed from what was determined,
we adopted Stochastic Gradient Descent with Restarts
(SGD-R), where cosine rate annealing gradually de-
creased the learning rate over the epoch from a desig-
nated value to zero [10]. The scheduling is governed as
shown in Equation 1:



0 200 400 600 800 1000
iterations

0.000

0.002

0.004

0.006

0.008

0.010

le
ar
ni
ng

 ra
te

Figure 3: Plot of the cosine rate annealing over each
epoch. The learning rate decreases from the precom-
puted optimal value to a minimum, over the course of
epoch only to again restart with a new epoch.

νt =
1

2

(
1 + νcos

(
tπ

T

))
+ νmin (1)

where ν is the initial learning rate, t is the iteration
over the epoch, and T is the total number of iterations
to cover a epoch. Up to 10 epochs were run using this
method, until the validation accuracy stabilized. This
scheduling operation is illustrated by Figure 3 for a
training task carried out on DenseNet-161.

2.4 Cycle Length Adaptation and Differential
Learning Rates

Our final step in the optimization scheme was to un-
freeze all the network layers, and use differential learn-
ing rates for separate sections of the networks. Before
diving into the rationale, we introduce:

Differential Learning Rate (DLR) involved the
process of assigning three separate learning rates,
spanning the length of network & adhering to
cosine rate annealing over the cycle length.

Cycle Length Adaptation (CLA) involved ex-
tending the cosine annealing over progressively
more integral number of epochs (with each
subsequent cycle).

Initial layers of convolutional neural networks
(CNN) typically capture rudimentary features, with
complexity of the same increasing in later layers. More
volatility can be envisioned in higher layer with each
pass of stochastic gradient descent (SGD). Therefore
assigning a very low-rate of α = 0.0001, left the ini-
tial layers virtually undisturbed, whereas a moderately
high rate of α = 0.01 allowed elasticity for change in
the higher layers. The mid-section of the CNN was
assigned a rate of α = 0.001.

0 200 400 600 800 1000 1200 1400
iterations

0.000

0.002

0.004

0.006

0.008

0.010

le
ar
ni
ng

 ra
te

Figure 4: Cosine rate annealing extends to progres-
sively higher number of epochs in cycle length adapta-
tion.

Concurrent with changing the designated learning
rates over different sections, we also extended the cy-
cle length of cosine annealing, following l = 2n epochs,
where n indicated the cycle number and l indicated
the calculated number of epochs to conduct the anneal
cycle. As the model trained closer towards global min-
ima, the parameters needed less perturbations. Gradu-
ally slowing down the SGD-R process with cycle length
adaptation, guaranteed a better convergence towards
global minima. The aforementioned step is illustrated
by Figure 4, implemented on DenseNet-161.

3 Results

The results from conventional training, described in
Section 2.1, are illustrated in Table 1. For all the
candidate architectures, early stopping halted model
learning before empirically assigned maximum epochs.
As stated previously, the training was resumed with
α = 0.001, with a target to achieve a minimum of
90% validation accuracy. We have recorded learning
duration and stable validation accuracy attained by
early stopping with both the learning rates. Total time,
which is a sum total of all learning durations, is pre-
sented in the last column.

The results from our optimization scheme are illus-
trated in Table 2. The columns highlight wall time
recorded for phases described in Sections 2.2 through
2.4. The speedup factor on total time is indicated in
the last column.

A confusion matrix for evaluation of the validation
process on DenseNet-161 is presented in Figure 5. Ma-
trices for other architectures are in the Appendix. We
offer a few observations at this stage. We can see that
models tune to near state-of-the-art accuracy values,
without a high training time. Furthermore, they are
capable of learning without over-fitting, on an ortho-
dox choice of 5:1 training validation split of CIFAR-10.



Table 1: Training on CIFAR-10 with conventional method

Model Accuracy (α=0.01) Time (s) Accuracy (α = 0.001) Time (s) Total time (s)

ResNet-34 86.25% 14749 90.36% 3008 17757
ResNet-50 86.56% 32596 90.54% 1442 34039
ResNet-101 86.35% 58315 90.71% 2323 60639
ResNet-152 86.42% 88520 90.68% 3367 91888

DenseNet-161 89.88% 51109 93.02% 3518 54628

Table 2: Training on CIFAR-10 with optimization scheme

Model Acc. with SGD-R Time (s) Acc. with DLR+CLA Time (s) Total time Speedup factor

ResNet-34 82.45% 3816 96.84% 5840 9565 1.84
ResNet-50 80.34% 5345 96.82% 6472 11817 2.88
ResNet-101 84.20% 2676 97.61% 3998 6673 9.09
ResNet-152 82.50% 3517 97.78% 5496 9012 10.20

DenseNet-161 82.89% 2001 97.15% 5195 7195 7.59

Figure 5: Confusion matrix for the quality of evalua-
tion for CIFAR-10 on DenseNet-161

This demonstrates that learning rate is effective tool
even with a smaller corpus of images. Most impor-
tantly, we observe that larger architecture receive bet-
ter performance gains than smaller ones. We believe
this is a valuable trait of our scheme, since current
research is progressively moving towards using larger
quantities of data and bigger architectures.

4 Application

To investigate benefits of our optimization technique
and draw inferences, we introduce an application based
on medical diagnostics for which this scheme was envi-

sioned.

Dermatological diseases exhibit a wide variety in
their manifestation. At a time when demand for medi-
cal consultation is rising, there is a severe under-supply
of dermatologists in many countries. The number of
practitioners in US has plateaued at 3.6 per 100,000
people and several East Asian countries advocate mo-
bile clinics or tele-medicine [11]. In the absence of im-
mediate avenues, people resort to general practitioners
(GP). Statistics indicate that the opinions of GPs are
concurrent with dermatologists only 57% of the time
[12]. We attempt to provide machine learning based
solutions to bridge this gap with a two-fold aim: To
reduce workload of the dermatologist by aiding faster
screening & provide customized means to people for
detecting possible skin problems

Most open medical image databases are small and
unbalanced. Hence, there is a need to develop
paradigms for effective training with limited informa-
tion. Further, since disease labels could get updated
periodically, or model requires customization for a new
population type, training and deployment needs to be
fairly rapid. Our schema manages to fulfill both the
objectives, guaranteeing rapid deployment to the pro-
duction servers. We chose a dermatological dataset
with 10 unbalanced classes, containing 7543 images.
The train-validation split was done unevenly to mimic
a real database. We trained aforementioned architec-
tures with vanilla scheme, followed by our optimization
trick. We have compared the stable validation accuracy
and total time across different architectures in Table
3. We again observed improved accuracy by around
10% points and speedup between 3.1 and 5.7 times.
A confusion matrix based on ResNet-152 is shown in
Figure 6.



Table 3: Performance comparison between training schemes on dermatological images

Model Accuracy (Conventional) Time (s) Accuracy (DLR+CLA) Time (s) Speedup

ResNet-34 72.62% 1576.33 83.40% 343.20 4.6
ResNet-50 71.88% 2130.27 83.26% 692.64 3.1
ResNet-101 71.70% 4216.22 83.19% 1076.90 3.9
ResNet-152 71.56% 5437.72 84.90% 958.88 5.7

DenseNet-161 78.02% 4156.75 84.61% 946.14 4.4

Figure 6: Confusion matrix for the quality of evalua-
tion on dermatological dataset classified by learning on
a pre-trained ResNet-152

5 Conclusion

We have demonstrated that there is much room for
performance improvement in classical techniques by
tuning the learning rate over the course of the train-
ing. It not only speeds up the convergence, but allows
better model fits, increasing validation accuracy. By
slowing down learning in initial layers of CNN, it is
easy to shift the bulk of computation towards the final
layers, resulting in optimization of the process. Fur-
ther, we observed that because of a fine-grained learn-
ing scheme, the models are more immune to learning
bias in an unbalanced dataset, in comparison to con-
ventional means.

References

[1] Russakovsky, O., Deng, J., Su, H and Krause, J. ”Im-
agenet large scale visual recognition challenge.” Inter-

national Journal of Computer Vision 115.3 pp.211-252,
2015

[2] Krizhevsky A., Sutskever, I and Hinton, GE. ”Ima-
genet classification with deep convolutional neural net-
works”. Advances in Neural Information Processing,
pp. 1097-1105, 2012

[3] He, K., Zhang, X., Ren, S. and Sun, J. ”Deep resid-
ual learning for image recognition.” Proceedings of the
IEEE Conference on Computer vision and Pattern Recog-
nition, 2016.

[4] Huang, G., Liu, Z. and Van Der Maaten, L. ”Densely
connected convolutional networks.” Proceedings of IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2017.

[5] Szegedy, C., Liu,W., Jia, Y. and Sermanet, P. ”Going
deeper with convolutions.” Proceedings of the IEEE
Conference on Computer vision and Pattern recogni-
tion, 2015.

[6] Srivastava, N. and Hinton, GE. ”Dropout: a simple
way to prevent neural networks from overfitting.” The
Journal of Machine Learning Research, 15.1, pp. 1929-
1958, 2014.

[7] Ghiasi, G., Lin, T.Y. and Q.V, Le. ”DropBlock: A reg-
ularization method for Convolutional networks.” Ad-
vances in Neural Information Processing Systems, 2018.

[8] Krizhevsky, A. and Hinton, GE.”Learning multiple lay-
ers of features from tiny images”. Vol.1 (4), Technical
report, University of Toronto, 2009.

[9] Smith, LN. ”Cyclical learning rates for training neural
networks.” 2017 IEEE Winter Conference on Applica-
tions of Computer Vision (WACV), 2017.

[10] Loshchilov, I. and Hutter, F. ”SGDR: Stochastic gra-
dient descent with warm restarts.” Proceedings of the
International Conference on Learning Representations
(ICLR), 2017.

[11] Kimball, A.B. and Resneck, J.S. ”The US dermatology
workforce: a specialty remains in shortage”. Journal
of the American Academy of Dermatology, 59 (5), pp.
741-745, 2008.

[12] Lowell, B.A., Froelich, C.W., Federman, D.G. and Kirsner,
R.S., ”Dermatology in primary care: prevalence and
patient disposition”. Journal of the American Academy
of Dermatology, 45 (2), pp. 250-255, 2001.



Appendix

(a) ResNet-34 (b) ResNet-50

(c) ResNet-101 (d) ResNet-152

Confusion matrices of validation set from different ResNet architectures trained on CIFAR-10 dataset


