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Abstract

Gait recognition has various applications such as
surveillance and criminal investigation since it can
work even at a distance from a camera without the
cooperation of subjects. In the conventional methods,
especially when using silhouette images, a typical fea-
ture is Gait Energy Image (GEI), which is an aver-
age silhouette image of a given sequence. Although
the GEI feature can represent the sequence compactly,
it cannot capture a more detailed structure of the se-
quence. To address this issue and increase the robust-
ness to the speed variations of walking, gait recogni-
tion based on Mutual Subspace Method (MSM) was pro-
posed, where each image sequence is compactly repre-
sented by a subspace. In this paper, we enhance fur-
ther the MSM based method by introducing two func-
tions: 1) to add a feature extraction by projecting onto
a generalized difference subspace, 2) to use Convolu-
tional Neural Network (CNN) features, which are ob-
tained from a fully connected layer of a learned CNN,
as an input. The extended MSM with the projection is
called Constrained MSM, which has been well known as
a useful method for image set based recognition. The
proposed method achieved the accuracy of 97.7% on an
experiment with 1000 subjects from the OU-ISIR Large
population datast.

1 Introduction

In this paper, we propose a new framework of gait
recognition, which is based on Constrained mutual sub-
space method (CMSM) [1, 2], considering CNN fea-
tures obtained through a learned convolution deep neu-
ral networks as its input. Gait recognition has gained
much attention in surveillance and criminal investiga-
tion, as it is available even at a distance from a mon-
itor camera without the cooperation of subjects un-
like other types of biometrics, such as fingerprints, iris,
and face. Due to these advantages, gait recognition
has started to be used in practical cases for a criminal
investigation [3, 4].

Gait recognition often used the silhouette images of
a subject, as it can suppress the influence of the dif-
ference in the texture of clothes. A typical feature ex-
tracted from the silhouette images is Gait Energy Im-
age (GEI) [5, 6, 7, 8, 9, 10], which is defined as the

average of sequential silhouette images. GEI feature
can represent the overall structure of a gait sequence.
However, in the GEI, detailed structural information
such as the direction and magnitude of time change in
silhouette images may be lost in the compressing pro-
cess to an average.

To precisely represent the structure information of a
gait sequence, the mutual subspace method (MSM)[11]
was introduced [12, 13]. In the MSM based method, a
set of sequential gait silhouette images is compactly
represented by a subspace in a high dimensional vector
space, where a class subspace of a subject is generated
by applying the principal component analysis (PCA) to
a set of learning samples. Such a subspace reflects more
rich information on the structure of the sequence than
the GEI feature. Another important merit of introduc-
ing the subspace representation is to increase the ro-
bustness against the change in walking speed, since the
subspace is less susceptible to the walking speed[12, 13].

However, the discriminant ability of MSM is still in-
sufficient to perform high performance, since a class
subspace of each subject is generated without consid-
ering the class subspaces of other subjects. To improve
the discriminant ability, we introduce Constrained mu-
tual subspace method (CMSM), which is a powerful
extension of MSM that adds the projection of class
subspaces onto a generalized difference subspace. Con-
sidering high effectiveness of CMSM in image set based
recognition such as face, hand and action recognition
[1, 2, 14], we expect highly that the performance of the
MSM based framework can be further enhanced, while
inheriting its robustness against the change in walking
speed.

Besides the introduction of CMSM, we utilize CNN
features, which are obtained by feeding each silhou-
ette image of the sequence into a learned Convolutional
Neural Network. CNN feature can be used validly in
various types of recognition methods [15, 16, 17]. Thus,
we expect that the CNN feature can work well under
our framework based on CMSM to boost its perfor-
mance.

In this way, our framework of gait recognition is
built with two steps: 1) extraction of CNN fea-
tures and 2) classification by CMSM, as shown in
Figure 1. We verify the effectiveness of our frame-
work through two types of experiments using OU-ISIR
Treadmill dataset [18] and OU-ISIR Large population
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Figure 1. Conceptual diagram of the proposed
framework. 1) CNN is learned with training
dataset, and then training and test data are
transformed to CNN features through the learned
CNN, 2) CMSM is performed on CNN features.

dataset [19]. In the former, we evaluate the robustness
of our framework against the change in walking speed
in details. In the later, we evaluate the performance of
our framework on a large scale database.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the algorithms of the conventional
methods, GEI and MSM. In Section 3, we describe the
details of our framework of gait recognition. In Section
4, we demonstrate the validity of the proposed frame-
work through classification experiments on two public
datasets. Section 5 concludes the paper.

2 Related Work

In this section, firstly, we describe the representa-
tion of a gait sequence by GEI. Then, we overview the
concepts of the mutual subspace method and how to
apply it to the gait recognition.

2.1 Gait Energy Image

Gait Energy Image (GEI) is a spatio-temporal fea-
ture of a gait sequence. Given frame images of the se-
quence, each frame is converted to a silhouette image
as a preprocessing. Let xt ∈ Rh×w be a gait silhouette
image at time t in a sequence. The GEI is obtained by
aggregating the silhouette images {xt} over one gait
period as the following:

GEI({xt}Nt=1) =
1

N

N∑
t=1

xt, (1)

where, N is a length of a gait sequence.
It is shown that this aggregation induces the GEI

to robustness against noise included in each frame[5].

Furthermore, as an advantage of the GEI, it is known
that the GEI does not depend on the walking speed.
For these reasons, there are various gait recognition
methods using the GEI as an input [5, 6, 7, 8, 9].

However, the above operation does not consider the
direction and magnitude of change in the silhouette
images. In other words, GEI decreases the structure of
the sequence, although the structure is important for
realizing recognition with high accuracy. To overcome
this problem while keeping the advantages of the GEI,
the mutual subspace method have been introduced for
the gait recognition [12].

2.2 Mutual subspace method for the gait recog-
nition

The mutual subspace method (MSM) is a recogni-
tion method of a set of images [11]. In MSM, a set of
images is represented by a subspace representing struc-
tural information of the set. After the subspace rep-
resentation, a set of input images is classified by com-
paring input and dictionary subspaces.

In gait recognition, a whole structure of silhouette
images {xt} in a gait sequence is represented by a sub-
space [12]. Once applying the subspace representation,
comparing the structural information between two gait
sequences can be done by comparing the two subspaces.
To this end, the similarity between the two subspaces
is calculated by using canonical angles.

Given N1-dimensional subspace S1 and N2-
dimensional subspace S2 in d-dimensional vector space,
where N1 ≤ N2, the canonical angles {0 ≤ θ1, ..., θN1 ≤
π
2 } between the S1 and S2 are recursively defined as
follows[20, 21]:

cos θi = max
u∈S1

max
v∈S2

uTv = uT
i vi, (2)

s.t.‖ui‖2 = ‖vi‖2 = 1,uT
i uj = vT

i vj = 0, i 6= j,

where ui and vi are the canonical vectors forming the
i-th smallest canonical angle θi between S1 and S2.
The j-th canonical angle θj is the smallest angle in a

direction orthogonal to the canonical angles {θk}j−1k=1.
The canonical angles can be calculated from the

orthogonal projection matrices onto subspaces S1,S2.
Let {Φi}N1

i=1 be basis vectors of S1 and {Ψi}N2
i=1 be basis

vectors of S2. The projection matrices P1 and P2 are

calculated as
∑N1

i=1 ΦiΦi
T and

∑N2

i=1 ΨiΨi
T, respec-

tively. cos2 θi is the i-th largest eigenvalue of PT
1 P2 or

PT
2 P1. Alternatively, the canonical angles can be eas-

ily obtained by applying the SVD to the orthonormal
basis vectors of the subspaces.

The similarity between two subspaces S1 and S2 is
defined by using the canonical angles as follows:

sim(S1,S2) =
1

N1

N1∑
i=1

cos2 θi. (3)



Figure 2. Conceptual diagram of MSM for the
gait recognition. Each gait sequence is repre-
sented by a subspace, where it is generated by
applying PCA to the silhouette images of the se-
quence. An input subspace is classified based on
the similarities between input and dictionary sub-
spaces.

In MSM, an input subspace Sin, which is obtained
from a gait sequence, is classified by comparing it with
dictionary subspaces {Sc}Cc=1 using this similarity as
shown in Fig.2.

3 CMSM with CNN features

In this section, we first describe the concept of CNN
features and constrained MSM. Then, we explain the
overall method for gait recognition based on the con-
strained MSM with CNN features.

3.1 CNN features

The underlying architecture of convolutional neural
networks (CNN) is composed by connecting three types
of layers, convolution, pooling, and fully connected lay-
ers. In a CNN, an input image is classified based on
the output conviction degrees for each class from the
last layer with softmax. The last layer uses a feature,
extracted by previous layers stepwise, as evidence for
classification. Thus, the feature, extracted from any
hidden layer in the CNN, has high discriminative na-
ture. This discriminative feature is called CNN feature.

Previous works have shown the effectiveness of CNN
features for various types of applications [15, 16, 17].
We also use this advantage to the gait recognition by
a subspace-based method.

3.2 Constrained Mutual Subspace Method

In the MSM, the subspace of each class is generated
without considering a relationship with other class sub-

spaces. Therefore, subspaces that have similar feature
may be close together, so that MSM has room for im-
provement. Constrained MSM (CMSM) is an exten-
sion method of the MSM based on this idea [1, 2]. The
essence of CMSM is to classify input data by compar-
ing input and dictionary subspaces while limiting the
common information between different class subspaces.
This is because the common information is unneces-
sary for the classification. From this reason, in the
CMSM, an input subspace is classified after extracting
the difference component between classes by projecting
the subspaces onto the generalized difference subspace
(GDS) [2].

GDS is designed to contain only different compo-
nents among class subspaces {Sc}Cc=1 [2]. Thus, the
projection of class subspaces onto GDS can increase
the class separability, largely improving the classifica-
tion ability of MSM.

3.3 Gait recognition using CMSM with CNN
features

We construct a gait recognition method using the
CMSM and CNN features as shown in Fig.3. In
the following, we explain training and recognition
procedure in the case that C subjects have a silhouette
sequence {xct}Nt=1|Cc=1 as training data.

•Training phase

1. CNN is trained to classify each silhouette image
by using training images {xct}.

2. CNN features {f ct } are extracted from the trained
CNN.

3. Each class subspace {Sc} is generated by applying
PCA to a set of CNN features{f ct }.

4. GDS is generated by using {Sc}. Reference sub-

spaces {Ŝc} are generated by projecting {Sc} sub-
spaces onto GDS.

• Recognition phase

1. Given the input silhouette sequence {xint }.

2. A set of input CNN features {f int } is extracted
from the trained CNN.

3. A subspace of the input sequence {Sin} is gener-
ated by applying PCA to the input CNN features
{f int }.

4. An input subspace {Ŝin} is generated by project-
ing {Sin} onto the GDS.

5. The input sequence {xint } is recognized based on

similarities between the input subspace {Ŝin} and

dictionaries {Ŝc}.



Figure 3. The process flow of the CMSM with
CNN features for gait recognition.

Figure 4. CNN structure for the experiments.
This architecture is used for extracting CNN fea-
tures and classifying frames of a gait sequence.

Table 1. Layer configurations for CNN feature ex-
traction.

Layer Kernels
Size/
Stride

Activation Pooling

conv1 18 7× 7× 1/1 ReLU -
pool1 - 2× 2/2 - Max pooling
conv2 45 5× 5× 18/1 ReLU -
pool2 - 3× 3/2 - Max pooling

Figure 5. Example of the gait sequence.

4 Experiments

In this section, we confirm the effectiveness of us-
ing CMSM with CNN features for gait recognition
in two experiments. The first experiment focuses on
the robustness against the change in walking speed
by using OU-ISIR Treadmill dataset A [18]. The
second experiment thoroughly investigates the perfor-
mance using enormous dataset, OU-ISIR large popula-
tion dataset [19].

4.1 Verification of speed robustness

Details of the OU-ISIR Treadmill dataset A: The
treadmill database A includes 34 subjects. For each
subject, gait sequences are taken in 1 km/h units from
2 km/h to 10 km/h. Each sequence includes multiple
gait cycles. The above procedure was repeated twice
for training and testing sequences. Thus, training and
testing data have 306 (= 34 subjects × 9 speeds)
sequences, respectively.

After the shooting, each RGB frame is converted to
the silhouette image. The size of the silhouette image
is 128×88.
Experimental protocol: In this experiment, 3 gait
cycles were extracted from each subject’s sequence at
random. The number of images included in a gait cy-
cle was decided by subjective evaluation. Each cycle
extracted from testing data is classified.

Training and testing data were selected from the
whole dataset, according to the following procedure.
Cycles taken at one speed were used as training. On
the other hand, the same speed cycles from the pre-
defined training set and within ±2km/h cycles of that
were used for the testing. For instance, when the 3
cycles included in 4km/h are used as training data,
2km/h, 3km/h, 4km/h, 5km/h, and 6km/h are used
for testing.

We used the architecture of the CNN shown in Fig.4
to extract the CNN features. The parameters of each
layer of CNN are shown in Table 1. The CNN is trained
beforehand, using the training dataset, to classify each
frame. The CNN features are extracted from the fc3
layer, which is a fully connected layer of 1024 units,
included in the trained CNN.

Besides, for the evaluation, we used the overall of the
trained CNN. After inputting silhouette images of an
input cycle into the CNN, the input cycle is classified
based on the average value of the output conviction
degrees of each class from the fc4 layer with softmax.
We refer to this method as CNN(softmax).

As a baseline, we set a classification method using
CNN with the GEI. The baseline method classifies a
cycle by inputting the GEI of the cycle into CNN. This
CNN is the same architecture as the Fig.4, but training
is conducted to classify GEIs, not each frame. We refer
to this method as GEI-CNN.
Result: Table 2 shows the rank-1 identification rates
for each method. CMSM is superior to MSM. This
indicates that GDS projection works effectively as a
valid feature extraction in a task of gait recognition as
well as in face and hand recognition. Furthermore, we
can see that CNN-CMSM is superior to conventional
methods, GEI-CNN, CMSM, and CNN (softmax) in
most cases. This result suggests that it is important to
extract and compare the whole structure of each gait
sequence.



Table 2. The result of the experiment using OU-
ISIR treadmill dataset(%).

Train-
Test

GEI
CNN MSM CMSM

CNN
(softmax)

CNN
CMSM

2km-2km 74.2 81.7 97.1 100 99.7
2km-3km 64.7 72.2 92.5 99.3 97.4
2km-4km 30.7 46.7 80.7 92.8 94.1
3km-2km 53.9 62.4 97.1 98.4 100
3km-3km 82.4 87.3 99.7 100 100
3km-4km 54.9 67.0 96.1 98.7 99.7
3km-5km 19.9 41.2 86.6 94.8 97.7
4km-2km 20.3 29.4 86.9 92.5 95.8
4km-3km 51.6 63.4 97.7 99.3 99.3
4km-4km 84.3 87.6 94.8 98.7 98.0
4km-5km 50.7 68.6 93.8 94.8 96.1
4km-6km 21.9 40.5 81.4 91.2 93.5
5km-3km 15.4 26.1 87.9 95.4 97.4
5km-4km 45.8 50.7 94.1 94.8 97.1
5km-5km 85.3 90.8 94.8 100 100
5km-6km 58.8 73.2 88.9 93.1 99.3
5km-7km 35.6 51.0 75.8 86.9 94.8
6km-4km 7.8 30.7 83.3 93.5 95.8
6km-5km 46.7 64.7 95.4 96.1 99.7
6km-6km 84.0 87.9 96.4 100 99.7
6km-7km 60.1 82.4 93.5 95.1 97.4
6km-8km 8.8 10.8 16.7 29.1 36.9
7km-5km 18.0 25.8 78.8 87.6 88.6
7km-6km 56.2 59.2 94.8 97.4 98.0
7km-7km 75.5 88.6 100 100 99.7
7km-8km 9.2 16.0 35.6 45.1 55.9
7km-9km 3.9 9.8 21.9 36.9 44.1
8km-6km 9.5 5.6 7.8 13.7 14.1
8km-7km 15.7 6.9 11.1 18.0 19.3
8km-8km 65.4 80.7 90.8 93.8 94.4
8km-9km 69.3 78.8 94.4 94.1 98.0
8km-10km 52.3 72.2 85.9 90.5 95.4
9km-7km 5.2 8.5 12.7 13.1 20.3
9km-8km 56.2 71.2 80.7 84.0 89.5
9km-9km 81.4 92.8 98.7 97.1 100
9km-10km 70.6 87.9 92.5 97.1 98.7
10km-8km 46.7 51.6 69.3 83.0 86.9
10km-9km 73.9 83.7 97.4 99.3 99.0
10km-10km 75.2 92.1 98.7 100 100
Average 47.2 57.6 79.5 84.5 87.0

Table 3. The result of the experiment using OU-
ISIR large population dataset(%).

Number of
Subjects

GEI
CNN MSM CMSM

CNN
(softmax)

CNN
CMSM

200 77.0 91.0 95.5 98.5 99.5

500 80.0 83.8 95.8 96.6 98.4

1000 76.5 81.7 94.1 94.5 97.7

1500 53.4 78.9 92.4 93.3 94.1

4.2 Verification of performance in large popula-
tion

Details of the OU-ISIR large population
dataset: The OU-ISIR large population database in-
cludes approximately 4000 subjects. For each subject,

gait sequences are observed from four view angles, 55
degrees, 65 degrees, 75 degrees, and 85 degrees. Each
sequence approximately includes a gait cycle. The
above procedure was repeated twice for training and
testing sequences. Thus, training and testing data have
C subjects × 4 angles sequences, respectively.

After the shooting, each RGB frame is converted to
the silhouette image. The size of the silhouette image
is 128×88.
Experimental protocol: In this experiment, we used
only sequences taken at 75 degrees. This experiment
was conducted with 200, 500, 1000 and 1500 subjects.

CNN features were extracted from the trained CNN
under this experimental setting, according to the same
procedure described in the previous experiment. For
comparison, the softmax values of the trained CNN,
GEI-CNN, and other methods were used according to
the previous experiment.
Result: Table 3 shows the rank-1 identification rates
for each method. We can see that CNN-CMSM
achieved the highest results in all of the cases. For
GEI+CNN, we could not train CNN completely due to
the lack of training data, which caused the poor per-
formance. When the number of subjects is 1500, CNN-
CMSM achieved 94.1% accuracy, which is the highest
in this experiment. Besides, it is practical that when
the number of subjects increases, there is no sharp de-
cline in the identification rate.

5 Conclusion

In this paper, we proposed a new method for gait
recognition, based on CMSM and CNN features. We
verified the effectiveness of our method using two dif-
ferent databases. In the experiment with the OU-ISIR
large population dataset, CMSM+CNN showed the
97.7% accuracy in 1000 subjects classification. Also,
even when the number of subjects increased, no sud-
den decline in the recognition rate was observed. This
indicates that the gait recognition system can be op-
erated with high accuracy regardless of the number of
the subjects.

Several gait databases[22, 23, 24] have been released
to solve various problems in gait recognition. As a
future work, we aim to establish a gait recognition
method that can be used in any situations.

Also, in this paper, the neural network model con-
struction to make feature extractor is not considered.
In the current gait recognition, the gait image is first
converted to silhouette as a pre-processing. This
silhouette image is simple so that high-performance
recognition could be achieved with even a relatively
shallow architecture. However, in the case of inputting
raw images, we need to consider how to design a net-
work structure to achieve a high recognition rate, while
reducing the computational cost.
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