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Abstract

In histopathology, pathologic tissue samples are
stained using one of various techniques according to
the desired features to be observed in microscopic ex-
amination. One problem is that staining is irreversible.
Once a tissue slice is stained using a technique, it can-
not be re-stained using another. In this work, we pro-
pose a method for simulated re-staining using a Fully
Convolutional Neural Network (FCNN). We convert a
digitally scanned pathology image of a sample, stained
using one technique, into another image with a different
simulated stain. The challenge is that the ground truth
cannot be obtained: the network needs training data,
which in this case would be pairs of images of a sample
stained in two different techniques. We overcome this
problem by using the images of consecutive slices that
are stained using the two distinct techniques, screening
for morphological similarity by comparing their den-
sity components in the HSD color space. We demon-
strate the effectiveness of the method in the case of
converting hematoxylin and eosin-stained images into
Masson’s trichrome-stained images.

1 Introduction

In histopathology, pathologic tissue samples are
chemically processed, or stained, using one of various
techniques to enhance visible features in order to diag-

nose and characterize the disease based on morphology
of various cell components in microscopic examination.
The stain technique is chosen according to the pur-
pose of the examination. For instance, the most basic
and widely used stain is hematoxylin and eosin (H&E)
stain, which is used to highlight general cellular struc-
ture. Another example is the Masson’s trichrome (MT)
stain, which is used to differentiate between collagen
and smooth muscle in tumors.

Staining is an irreversible chemical process. Gen-
erally, once a tissue is stained using one technique, it
cannot be stained again using another; thus, one sam-
ple can only be observed with a single enhancement
modality. Consequently in clinical medicine, once a tis-
sue sample is stained with one technique, features that
are not highlighted by the specific stain often have to
be guessed. It is true that multiple slices of a tissue
can be stained differently. However, that requires sig-
nificantly more time and cost. If the histopathological
images can be digitally re-stained, more structures and
features would be enhanced than possible by a chem-
ical stain; thus such digital re-staining would be very
useful as one sample can give more information than
previously possible.

In a related work, Hashimoto et al. [2] used 16-band
multispectral images of H&E stained liver-tissue image
to enhance the fiber region. They took spectral trans-
mittance samples from different tissue components and
enhanced the fiber region according to that informa-
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tion, effectively simulating the MT stain. However, this
method requires a multispectral microscope, as well as
careful prior calibration of spectral transmittance.

Bejnordi et al. [1] proposed a system to standardize
H&E stained histopathological images to reduce the ef-
fect of variations in the color and intensity. They used
the hue-saturation-density (HSD) color model [5] to
align the chromatic and density distributions for each
of the stain components to match the corresponding
distributions from a template image. Our work sim-
ilarly utilize the characterization of the stain compo-
nents by chromatic and density distributions for other
purposes, namely, for simulating stain by one technique
based on an imaged obtained using another.

Here, we propose a method for using Fully Convo-
lutional Neural Network (FCNN) to convert a digitally
scanned pathology image of a sample stained using one
technique into another image that has a simulated stain
using another technique. Our method directly takes an
image of a stained pathological sample and outputs an
image of the same sample simulating a different stain.

An FCNN is a CNN that does not have a fully-
connected layer, which allows it to process an input
image of any size. To determine the color of a pixel in
the output image, it uses the information from the sur-
rounding wider region in the input image, utilizing the
chromatic and density distributions. The challenge is
that, as any CNN, an FCNN needs a large amount
of training data, which in this case would be pairs
of images showing the results of staining samples by
two techniques; however, such pairs are not obtainable
because chemical re-staining is not possible. In this
work, we overcome this problem by using the images of
consecutive slices that are stained using different tech-
niques. We screen the pairs to be used as training data
so that the slices are close enough by comparing them
after a non-rigid registration, using the density compo-
nent in the HSD color space, in order to compare the
images with different stains.

2 Method

In this paper, we focus on using an H&E stained
image to simulate an MT stained image. The input
H&E stained image is first converted to the HSD color
space [5]. The three-channel image is then input to
the Fully Convolutional Neural Network. The output
of the FCNN has two channels (hue and saturation in
the HSD color space). We combine the density channel
of the input image with this before converting back to
the RGB color space for output.

2.1 HSD Color Space

The stain conversion is performed on the hue-
saturation-density (HSD) color model [5]. We use the
coordinate system (cx, cy, D), where the first two co-
ordinates represent the hue and saturation, while D

measures the density. Specifically, the conversion from
the RGB space (r, g, b) to the HSD space is defined as
follows:

cx = Dr

3D
,

cy = Dg − Db

6D
+ 1

2 ,

D = Dr + Dg + Db

3 ,

where
Dr = − ln(r), Dg = − ln(g), Db = − ln(b).

This space is designed so that a different stain only
changes the hue and saturation, while the density is
only affected by the density of the stain solution. Thus,
we only change the hue and saturation in order to sim-
ulate different stain.

2.2 Training Data

The FCNN is trained using input-output image
pairs. The challenge here is that images showing the
results of two different stain of the same samples are
not obtainable because chemical re-staining is not pos-
sible. We overcome this problem by using the images of
consecutive slices that are stained using different tech-
niques. Out of a pair of large images (~10000 × 10000
pixels) of consecutive slices of a sample that are stained
by the two techniques, we sample smaller subregions
as training data. In the process, we screen the training
pairs so that the change between the slices are not too
large and they are morphologically similar. Because
the pair of images are differently stained, they cannot
be compared directly. As explained in §2.1, the den-
sity component in the HSD color space are relatively
independent of the kind of stain. Thus we compare the
slices stained differently using this component alone.

The overall density of the image, however, can be
different depending on various factors such as the con-
centration of the stain chemical and the optical condi-
tion of the camera. Thus, we scale the density com-
ponent by a constant normalization factor to match its
histogram over the image. Fig. 1 shows the comparison
of histograms of the D component of the two images I1
(H&E stained) and I2 (MT stained). It also shows the
histogram obtained by scaling the D component of im-
age I1 by a constant normalization factor k1,2. It can
be seen that the constant normalization factor matches
the histograms very well. The normalization factor k1,2
is obtained by minimizing the squared distance of the
histogram bins as vectors.

By comparing the normalized pair of density images,
we screen the training pairs so that only morphologi-
cally similar pairs are used. The process is outlined in
Fig. 2. The images of the consecutive slices are first
matched as much as possible by non-rigid registration.
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Figure 1: Histograms of the density component (D) of
the H&E stained image I1, MT stained image I2, and
I1 with scaled density by a constant factor k1,2.
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Figure 2: Training data generation. Comparing the
normalized density components, we screen the training
pairs to use only morphologically similar pairs.

From these large pair, we randomly cut out a small re-
gion. As training pairs, we use only the regions where
the slices are close enough as measured by the Mean
Squared Error between the matched density compo-
nents.

2.3 Network Model

The structure of the network is shown in Fig. 3 and
detailed in Table 1. Except for the last layer, a batch
normalization layer [3] is inserted after each layer and
a ReLU activation function is used. The last layer uses
the sigmoid function as the activation function. As the
fully convolutional network, this model can take the
image of any size as the input and outputs an image of
the same size. In Fig. 3, the thickness of the layers in-
dicates the number of channels. The model first shrink
the spatial dimensions as it down-samples, as well as
increasing the number of channels, then it up-samples
and reduces the channels. Down- and up-sampling is
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Figure 3: Netwrok model for re-staining. The thickness
indicates the number of channels.

Table 1: Details of the FCNN model for digital re-
staining. The size of the input image (W × H) is
arbitrary. The input image has the three channels
(cx, cy, D) of the HSD color space. The output has two
chromatic channels (cx, cy). In order not to change the
output size, 0-value padding is used in all the layers.
After each convolution layer other than the last is a
batch normalization layer [3], after which we use the
Rectified Linear Unit (ReLU) activation function. The
final layer uses a sigmoid activation function.

type kernel stride channel spatial dimensions
input 3 W × H
down-convolution 5 × 5 2 × 2 48 W/2 × H/2
flat-convolution 3 × 3 1 × 1 128 W/2 × H/2
down-convolution 3 × 3 2 × 2 256 W/4 × H/4
flat-convolution 3 × 3 1 × 1 256 W/4 × H/4
down-convolution 3 × 3 2 × 2 256 W/8 × H/8
flat-convolution 3 × 3 1 × 1 512 W/8 × H/8
flat-convolution 3 × 3 1 × 1 256 W/8 × H/8
up-convolution 4 × 4 2 × 2 256 W/4 × H/4
flat-convolution 3 × 3 1 × 1 128 W/4 × H/4
up-convolution 4 × 4 2 × 2 128 W/2 × H/2
flat-convolution 3 × 3 1 × 1 48 W/2 × H/2
up-convolution 4 × 4 2 × 2 48 W × H
flat-convolution 3 × 3 1 × 1 24 W × H
flat-convolution 3 × 3 1 × 1 2 W × H

achieved by convolutional layers with strides.

2.4 Training

As explained in §2.2, we randomly select small re-
gion with the dissimilarity measure smaller than a
threshold out of the images of consecutive slices. We
use the resulting pairs of images, H&E stained input
and MT stained teacher output, as training pair. As
the loss function, we use a standard MSE loss. Note
that the MSE is taken in the 2D chromatic components.

3 Experiments and Results

We evaluated the method by converting H&E
stained sample images of mouse pancreas to MT stain.

3.1 Dataset

We prepared pathologic images as follows. The spec-
imen was a mouse pancreas including tumor, surgi-



cally removed and treated with formalin. The paraffin-
embedded tissue blocks were used to prepare sections
of 4µm thickness. There were 64 pairs of consecutive
slices. Each pair were H&E- and MT- stained and
were scanned by Axio Scan. The image resolution was
98000 × 60000 pixels, each pixel roughly correspond-
ing to 4µm. We call these the high-resolution images.
We also used for some experiment down-sampled low-
resolution images, which is 15% of the resolution of the
original. The images of consecutive slices were non-
rigid registered using the method in [4].

3.2 Training

For training, we used 58 of the 64 pairs of slices, leav-
ing 6 for testing. We conducted two experiments using
the high-resolution and low-resolution images, respec-
tively. The training and testing scheme was the same
for both. We mini-batch trained the network using
AdaDelta [6] with the mini batch of 16 pairs of image
patches. Each patch was taken from a random position
within a randomly selected slice out of the 58 training
pairs. The size of the patches were 256 × 256 for the
high-resolution experiment and 128 × 128 for low reso-
lution. We trained for 100,000 mini-batch iterations.

3.3 Results and Analysis

For testing, we input the 6 test images into the
trained network. Fig. 4 shows some close-ups of the
results in the high-resolution experiment. It shows the
H&E stained input, the output (simulated MT stain),
the output with the density matched with the neigh-
boring slice, and the neighboring slice (MT stained) for
comparison. Note that the network predicts the chro-
matic components (cx, cy) only; the constant factor on
the density is merely for the convenience of comparison.
Fig. 5 shows two entire images in the low-resolution
experiment.

Quantitative comparison of the results is rather dif-
ficult since we don’t have the ground truth and also
there is no prior work on re-staining. We attempt the
following two evaluations.

In [5], the authors showed that in the HSD color
space only the 2D chromatic components are needed
for all possible distinctions. Thus, for the Example 1
of Fig. 4, we compare the distribution of the chromatic
components of the input, the output, and the neighbor-
ing slice. It is shown in the left plot in Fig. 6. It can
be seen that the chromatic distribution of the output
lies centrally on the real MT stained sample.

Also, we compare the difference between various MT
stained slices and simulated MT stained slices in the
high-resolution experiment. It is shown in the right
plot in Fig. 6. We fix a reference MT stained slice.
The red dots show the Mean Squared Error between
the reference slice and the simulated MT stains, i.e.,
the output from H&E slices removed from the refer-
ence slice by the distance (number of slices) seen on

the horizontal axis. The green dots indicate the MSE
between the reference slice and other MT stained real
slices, removed from the reference slice by the distance
(number of slices) seen on the horizontal axis. To see
the influence of registration error, we also show the ma-
genta dots that are the same error as red. This shows
the output simulated MT stain is close enough as com-
pared to the real neighboring slices.

4 Conclusion

In this paper, we have proposed a method for using
Fully Convolutional Neural Network (FCNN) to simu-
late a re-staining of pathology images. To overcome the
challenge of obtaining training pairs we used consecu-
tive slices that are stained using different techniques,
screening for morphological similarity by comparing
their density components in the HSD color space. The
experiments showed that the proposed method pro-
duces simulated re-stain that is close to real stain.
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Input (H&E) Output (H&E → MT) Output (D × k1,2) Neighbor (MT)

Example 1

Example 2

Example 3

Figure 4: Close-up of the results with the high-resolution images. First column: input (H&E). The output simulates
the MT stain but it only has the chromatic components. Second column: output with the density component of
the input. Third column: output with density multiplied by a constant factor k1,2. Last column: real MT stain of
the neighboring slice for comparison.
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Figure 5: The whole specimen results with the low-resolution images. Sample 3 is a different specimen from Sample
1 and 2. First column: input (H&E). Second column: output (simulated MT) with the density component of the
input multiplied by a constant factor k1,2. Last column: real MT neighboring slice for comparison.
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Figure 6: Left: Choromatic distributions of the input, the output, and the neighboring slice of the Example 1 in
Fig. 4. Right: Mean Squared Error in (cx, cy) between the output simulated MT stain and real MT stained nearby
slices. Red: between the reference MT slice and the simulated MT stains. Green: between the reference and other
real MT slices. Magenta: between the reference MT slice and the simulated MT stains..


