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Abstract

We propose a deep learning approach for predicting
the apparent age of a person’s skin. Our method works
by first normalizing a frontal image of a face and crop-
ping rectangular-shaped skin patches that are each nor-
malized and fed into separately trained region-specific
CNNs. Each regional CNN model is fine tuned using a
novel data augmentation technique that artificially re-
duces the apparent age of the skin through a series of
smoothing operations that act as a proxy for subjects
with younger looking skin. The deep features extracted
from each of these regions are then used to train a sep-
arate set of regression models that predict the skin age.
We evaluate our method using two strategies: the first
looks at how well the predicted regional skin age clusters
around the true biological age of the subject, for which
we achieve a 1-off accuracy of approximately 83%. In
the second strategy, we validate that our models pre-
dict apparent skin age based on a user study that asked
over 15 judges to compare image pairs of subjects with
the same chronological age, but with different skin age
predictions. For this second study, we achieve an aver-
age 66% accuracy based on consensus rating across all
human raters, and as high as 76% for some age groups.

1 Introduction

The automatic assessment and understanding of fa-
cial skin health has many research applications includ-
ing the early detection of underlying health problems
[9], suggested lifestyle and dietary changes such as less
sun exposure or more hydration [1], as well as identi-
fication of recommended skin-care products that can
improve the overall health of facial skin [14]. One of
the strongest indicators of skin health that has been
identified in the literature is the difference between the
apparent age (or perceived age) of an individual’s skin
and their actual chronological age [16]. Research has
shown that different parts of the face age differently
and that for some individuals, the apparent age can be
significantly different from their chronological age [6].
Although one cannot stop the natural aging process,
the ability to quantitatively and objectively predict ap-
parent skin age remains a useful proxy for skin health
that could provide many benefits to many research ar-
eas and applications.

In this paper, we propose deep visual models for
predicting apparent skin age (referred to herein as skin
age for brevity). Specifically, our models predict the
skin age of various facial skin regions based purely on
micro-features such as wrinkle, spots, sagging, etc, and
with minimal influence from macro-feature such as the
shape of eyes, distance between eyes, nose, etc. Poten-
tial applications for our work include the assessment
of skin quality and health, and recommendations for
skin-care products.

Due to the lack of standards and ground truth for
skin health or apparent skin age, we assume that it
can be approximated by chronological age over a large
population. This assumption can be rationalized by
the observation that over a large ensemble of human
faces, skin age and chronological age are strongly cor-
related on average, while for any individual subject
the two age measures may deviate. Models trained on
large datasets with skin micro-features as inputs and
chronological age as ground truth labels would thus
be expected to predict skin age (even if deviated from
chronological age) for any given individual. Further-
more, our goal is to locally predict skin age in different
regions of the face (e.g. cheeks, chin, under eye, etc.).
To this end, we introduce a data augmentation scheme
that utilizes the fact that smoother skin is typically
perceived to be younger [2]. In all our experiments, we
select only faces that are free of makeup.

The following are the key contributions of this pa-
per: (1) To the best of our knowledge, this is the first
paper to address the estimation of region-wise appar-
ent skin age using CNNs explicitly designed to focus on
micro-features of the skin; (2) We show that it is fea-
sible to predict apparent skin age without macro-cues
such as the eyes or nose, which have been commonly
used in prior art; (3) We propose a novel two-stage
training process for the age regressors, using data aug-
mentation to ensure that our method captures region-
specific characteristics of facial skin age; (4) We utilize
an early fusion approach to aggregate features from re-
gional skin age estimations to estimate the overall facial
skin age.

A secondary goal of this work is to extend our
skin age prediction approach to smartphone selfie im-
ages captured in the wild. While our initial models
are trained on standardized high-quality photographs
captured under near-ideal acquisition conditions (hair
pulled back, even lighting, neutral expression, no
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makeup, etc.), we extend our training and evaluation to
roughly 1.5K images collected using a variety of frontal
cell phone cameras, thus testing the generalization of
our models to an end-user application in realistic set-
tings where adverse conditions are present.

Figure 1. Algorithm flowchart of the proposed fa-
cial skin age estimation approach.

1.1 Related Work

Currently, there is no standard approach to objec-
tively determine the perceived age of a individual that
is based exclusively on facial skin. However several
models and techniques have been proposed that auto-
matically predict the perceived chronological age using
holistic facial features. Recently, Escalera et al. re-
leased the ChaLearn dataset [13] which includes ground
truth collected from multiple annotators that associate
a perceived age with each subject based on overall im-
age appearance. The apparent age of a subject was
then estimated using the mean of the perceived age
opinions among annotators. This dataset was used to
train and test the DEX method[6]. Another approach
that is described in [4] uses this dataset to train a net-
work in 3 stages; the first stage trains a face identi-
fication model, the second stage fine-tunes the model
to predict biological age, and the last stage fine-tunes
the network on the ChaLearn dataset. While related
to our work, this dataset is not suitable to develop and
test our method since it is unclear which facial features
in particular were the driving factors for the human-
annotated age predictions, and to what extent facial
skin contributed. However, we adopt a similar strat-
egy taken by both of these approaches in that we also
train our models using a multi-stage approach.

In a biological survey on the aging face process by
Albert et al.[3], it is shown that horizontal and verti-
cal craniofacial changes (shape changes) including head
circumference, head length, bizygomatic breadth, and
head breadth can play an important role in the aging
process, as well as changes in skin complexity, and soft-
tissue changes such as smoothness and elasticity. It is
also noted that perceived age of skin is more heavily
affected by environment and lifestyle than craniofacial
changes, thus implying that one of the primary fac-
tors for the disparity between biological age and per-
ceived age comes from facial skin characteristics. This

research is what primarily motivated our use of the
data augmention scheme described in 2.2.

2 Deep learning on regional facial skin
patches for apparent age estimation

The main objective of this work is to estimate the re-
gional and overall skin age given a frontal face image.
Inspired by the successes of deep learning applied to
face recognition [8], biological age estimation [5], and
recently apparent age estimation [6], CNNs are chosen
as a key component of our approach. While previously
proposed prediction models implicitly use macro fea-
tures (eyes, nose, etc.), or even investigate the regional
importance of different facial areas for age and gender
classification[12], our objective is to estimate the age
based on skin alone. Furthermore, because skin age
can vary across regions, we estimate the regional and
overall facial skin ages using locally extracted patches
as shown in Fig. 1.

2.1 Extraction of regional facial skin patches

Our method first normalizes all frontal facial image
to a standard size (e.g., 716 pixels in height from the tip
of forehead to bottom of the chin while keeping orig-
inal image aspect ratio). The normalized facial area
is then segmented into multiple regions (shown colored
in Fig. 1-a) that represent the forehead, left and right
cheeks, chin, and under eyes. The region shapes are
derived from 68 landmarks extracted using DLIB[15].
Since CNNs require rectangular patches, we obtain the
largest inscribing rectangle centered at each region’s
centroid. Since the rectangles can be quite small in
some regions like the cheeks and under-eyes, we in-
crease the rectangle size by 10% to obtain more skin
pixels in each patch at the expense of potentially in-
cluding parts of a macro-feature. Examples are shown
in Fig 2. As observed in the figure, contamination by
macro-features is limited to a small fraction of the pix-
els. Finally, the extracted skin patches are resized to
256 × 256. Four groups of facial regions are defined
for our investigation: forehead, under-eyes, cheeks, and
chin.

2.2 Training regional CNNs

Due to the limited availability of training data that
it suitable to train our skin age models, we use an in-
termediate dataset similar to the approach described in
DEX [6]. However one key difference in our approach
compared to DEX is that the images used to train our
intermediate and final fine-tuned models come from the
same dataset. Additionally, our intermediate model
uses images of full faces, which are subsequently fine-
tuned on region-specific patches. This difference is ex-
plained more clearly in Sec. 2.2.2.



Figure 2. Extracted skin patches for four subjects.
Each column, from left to right: forehead, left
cheek, right cheek, chin, under right eye right,
under left eye.

2.2.1 Datasets

There are two datasets used for training our skin age
models. Note that these datasets comprise images of
female subjects because they were collected as a part of
a skin care application targeted for female consumers.
However the methodology readily extends for male sub-
jects and is the subject of a future study.

DS1-36K: A set of 36, 000 clinically captured (even
lighting, hair pulled back) frontal facial images
from 1, 172 female subjects with ages ranging from
18 to 67. Each subject has 2 to 87 images taken.
The multiple copies for each subject can vary in fa-
cial expression such as neutral, smiling, open/close
eyes, etc. Some subjects had glasses on.

DS2-Selfie: A selfie dataset collected in the wild that
consists of roughly 1.5K subjets with ages ranging
from 18 to 75, each with unique identities. Selfies
were captured with a wide variety of smartphone
cameras. Most of these images have good image
quality; however some contained facial expressions
and occlusions (hair on forehead, glasses, etc.)

2.2.2 Training regional facial CNNs

Although it is possible to train CNNs directly as
regression models for skin age estimation, similar to
DEX, we chose to train the CNNs as classifiers because
a regressor often requires more training samples in or-
der to converge [6]. Therefore, we train our age regres-
sors separately and only use each of the region CNNs
as deep feature extractors. Based on the age distribu-
tion of our DS1 dataset, we chose five age classes that
led to roughly a balanced number of samples per class:
[0−32], (32−40], (40−48], (48−54], (54−100]. Due to
repeat images, we formed the training and validation
sets based on subject ID (80% for training and 20% for
testing).

Our progressive training scheme begins with a pre-
trained AgeNet that has been designed to predict eight
age-groups. Our process first fine-tunes the eight-class

AgeNet model into a five-class model using full facial
images. This full-face age CNN is then fine-tuned into
four separate region-specific CNNs using region-specific
skin patches (see Fig. 1 and Sec. 2.1). The rationale for
using separate CNN’s for each region is primarily based
on the observation that the appearance of typical ag-
ing characteristics such as wrinkles, spots, and sagging
will occur with varying severity at different time inter-
vals across different facial areas [3]. If a single network
is used, it would be required to learn multiple repre-
sentations based on where each skin patch came from,
which could be impractical due to macro facial cues
being cropped out and micro-features across regions
being visually similar.

Table 1 shows the performance of each CNN on the
DS1 validation set for our five age-group classification
using top-1 and 1-off accuracy. Note that we observe a
clear drop in performance when estimating chronologi-
cal ages from facial parts rather than the full face image
(from 83% to less than 59% for any specific region).

Top-1 accuracy 1-off accuracy
Full Face 49.4% 83.2%
Forehead 33.6% 58.7%
Under eyes 32.6% 63.2%
Cheeks 30.5% 61.1%
Chin 35.3% 65.3%

Table 1. Performance of full and regional facial
skin age CNNs on DS1 validation set for our five
age-group classification

3 Training the age regression models

As shown in Fig. 1, there are five age regression
models to be trained: one for each facial ROI plus one
additional regressor that combines features from all re-
gions to estimate the overall skin age for the full face.
They are denoted as Rforehead, Reyes, Rcheek, Rchin,
and Rface in this paper. The inputs to each of the
the regional age regressors are the deep features of the
last fully-connected layer, fc7, extracted from the corre-
sponding fine-tuned region-specific AgeNet network[5].
The inputs to the full-face skin age regressor Rface are
the concatenated deep features from the four parts:
forehead, under-eyes, cheek, and chin. That is, we
choose early-fusion as our strategy for aggregating re-
gional skin age information to the full face.

As mentioned earlier, because we did not have the
(regional) skin age ground-truth, the region-specific
CNNs were trained with regional skin patches while us-
ing subject’s chronological age as the surrogate ground-
truth. If all of the CNNs perfectly model the training
dataset, our method would estimate all regional skin
ages to the same ground truth value, which is not the
intended outcome. Our main goal is to learn a model
that can generate meaningful/relevant deep features



to model the regionally varying characteristics of skin
ages. Hence, we use a two-stage data augmentation
approach that is illustrated in Fig. 3-a.

(a)

(b)

Figure 3. In (a) we show the two-stages for train-
ing each regional age regressor. In (b) we show an
example of this process for forehead skin patches.

3.1 Stage 1: Full face skin age regressor

First, we train the full face skin age regressor (Rface)
using all subjects from the DS1 dataset and the self-
reported biological age as ground-truth. For subjects
with multiple images, we randomly select 5 images and
calculate a single deep feature vector for each face re-
gion. We do this by averaging together the deep feature
vectors generated for each of the regions extracted from
each of their images. The purpose of having only one
deep feature vector per subject is to have a balanced
representation for each subject so that the model train-
ing is not biased.

We use standard SVM regression for training Rface.
Here, 80% of the subjects are randomly pooled for
training and the remaining 20% are used as testing.
The results are shown in Fig. 4. Two metrics are used
as performance indicator for training and testing sets:
mean absolute error (MAE) for age estimation, and R2

for correlation between actual and estimated chrono-
logical ages. Values of these performance metrics for
training and testing sets are labeled in the triplets pro-
vided in the caption of each figure, respectively. For our
testing dataset, our aggregate full-face model outper-
forms AgeNet on entire full-face images, even though
AgeNet has access to macro-facial features such as the
eyes, nose, mouth, etc. We believe that one expla-
nation for this performance gain may be due to the
availability of more fine level of skin features that are
not resolvable when a full face images is re-scaled to
AgeNet’s input 256x256 resolution.

Figure 4. Performance of full face age regressor
in estimating chronological ages. The perfor-
mance indicators (MAE,R2) for training and test-
ing samples are (3.2, 0.82) & (5.6, 0.59), respec-
tively.

3.2 Stage 2: Regional facial skin age regressors

To train the skin age regressors, we can no longer
use the chronological age as ground-truth as was done
in Stage 1 since our overall goal is to regress apparent
skin age. To address this, we developed a data aug-
mentation scheme by borrowing a technique used to
develop a perceived image quality metric [10], where
target images with different degrees of image quality
defects come from image simulation while their labels
(i.e., quality rating) come from psycho-physical experi-
mentation with human observers. Figure 3b illustrates
our data augmentation scheme. The overall idea is
to augment the original training dataset by applying
different amounts of smoothing (for top-hat kernels)
on each region of each subject in the training set and
then estimating the apparent age in two steps: first,
we process the smoothed region patch through the cor-
responding region CNN and concatenate the resulting
deep feature vector with those extracted from other re-
gional CNNs to form a single feature vector. Next, this
vector is processed through the full-face skin age regres-
sor Rface to estimate the full-face skin age. We there-
fore treat the latter as labeled perceived age ground-
truth and use this augmented dataset to train each
regional age regressor Rforehead. Note that the con-
catenated deep feature vector for Rface is similar to
the original feature vector, except the portion corre-
sponding to the smoothed region. We expect that the
estimated full-face skin age with a smoothed subregion
would be lower than the original one, which is con-
firmed in Fig. 5. We remark that it may be beneficial
to use different sets of smoothing levels for different re-
gions rather than using a fixed set of smoothing levels
for all regions while performing this data augmenta-
tion. We note also that this data augmentation proce-
dure is very similar to how the Jacobian is computed to
estimate the sensitivity of a dynamic system [11]. The
data augmentation approach verifies the encoding of
the desired property, smoother-means-younger, in the



full-face skin age regressor and can be used to explain
how the full-face skin age regressor weighs each facial
region in making its decision. This is an aspect that
we wish to investigate further in our future work.

Figure 5. Trend of predicted skin age as smooth-
ing increases.

We use an 80% − 20% split for training and test-
ing the correlation between chronological age and our
apparent age prediction in Fig. 6. Comparing these
plots to Fig 4, we observe that the current full-face
skin age estimation is better than the regional skin age
estimation. This is expected since we have stronger
modeling capacity for overall skin age model. In ad-
dition, the chronological ages (labels provided for our
modeling) are likely to be a better indicator for full-face
skin age compared to the skin ages of individual facial
regions. However, from the MAE accuracy perspec-
tive, all models perform similarly with the exception
of the forehead model. During the data augmentation
for training regional regressors, we discovered that the
forehead region has the smallest slope in driving full-
face skin age change (see Fig. 5). That is, with the
same amount of spatial smoothing in various facial re-
gions, the smoothed forehead has the least change in
the estimated full-face skin age. Another useful met-
ric for judging the accuracy of our model is the spread
of the age estimation errors. Using 90 percentile as
the range, four models have the resolution of around
±9 years while forehead skin-age model has the reso-
lution of ±13 years (see first column of Table 2). Al-
though this spread may appear quite large, when com-
paring to the AgeNet performance in estimating age,
our result is comparable. In addition, it is worth men-
tioning that AgeNet leverages macro-features while our
method does not.

In summary, we train the age regression models in
two stages. The full-face skin age regression is trained
first using the chronological age as the surrogate of
skin age. The regional skin age regression models are
then subsequently trained using our data augmenta-
tion scheme which acts as a proxy for perceived age.
Because a perceived age prediction is given for each fa-
cial region independently, we are then able to estimate
the (coarse) regional variations of skin age relative to
a subject’s full-face skin age.

(a) (b)

(c) (d)

Figure 6. Performance of facial part age re-
gression models for predicting chronological
ages. The performance indicators (MAE,R2)
for training and testing samples are the
following: (a) (5.8, 0.33) & (6.6, 0.19) for fore-
head, (b) (4.3, 0.62) & (4.6, 0.57) for eye, (c)
(3.9, 0.66) & (4.6, 0.55) for cheek, and (d)
(4.1, 0.63) & (4.9, 0.50) for chin.

4 Application to Selfie Images & Apparent
Age Study

In the aforementioned experiments, the data used
to train and evaluate our models consisted of labora-
tory controlled face images captured with ideal light-
ing conditions, fixed capture distance, hair pulled back,
no-makeup, etc. In order to determine how well this
model transfers to a real world application with smart-
phone selfie captures in the wild, we collected a selfie
dataset that consists of roughly 1.5K facial images,
each with unique identities, captured with a wide va-
riety of smartphone cameras. While a large number of
images captured were of good image quality, many con-
tained one or more of facial expressions, poor lighting,
facial occlusions (hair covering forehead, glasses, etc.),
and graininess.

Using the same method described in the previous
section (including the augmented smoothing stages),
we train and test regression models using the 1.5K
selfie images. Table 2 provides the accuracy of this
model, as well as the original DS1 trained model dis-
cussed in previous sections. An interesting result from
this experiment is that, for each of the facial regions,
the overall error reduces significantly (approximately
a 20% reduction) for the model trained on the 1.5K
dataset. This is likely due to the increased number of
unique subjects available (roughly 3 times as many)



compared to that in DS1.

DS1-36K DS2-Selfie 1.5K
Full Face ±8.6 ±8.0
Forehead ±12.7 ±9.1
Under eyes ±9.5 ±7.8
Cheeks ±8.6 ±7.3
Chin ±9.5 ±7.8

Table 2. Range of difference (in years) betweem
chronological age and predicted skin age at 90th
percentile for original 35K model and selfie 1.5K
model.

In our final experiment we test the hypothesis that
our model has indeed learned to determine apparent
age based on skin features alone. We first collected
a subset of image pairs from our DS2-Selfie dataset,
where each pair shows two subjects with the same
chronological age, but with different predicted skin
ages. A total of 2-3 pairs were collected for each age
between 18-65 to create a set of 112 pairs. Next, two
version of each image pair were generated; one ver-
sion with macro-features present, and a masked version
with macro-features hidden. A total of 15 judges were
then asked to rank each image pair by selecting the
subject they perceived to be older. Table 3 contains
our results from this study, from which a few observa-
tions can be made: (1) across most age groups, agree-
ment between the judges and our skin age models was
higher when macro-features were masked, thereby indi-
cating that our models in fact learned to only associate
skin features with age; (2) consistency between the hu-
man judges and model predictions are closer aligned
for older age groups.

Age Pair Count No Mask Mask All
≤ 25 21 .53 .50 .52
25-34 27 .59 .70 .64
35-44 25 .64 .76 .69
45-54 23 .61 .60 .61
≥ 55 16 .56 .73 .65

Overall: 112 .59 .66 .62

Table 3. Agreement between human judges and
our model for picking a subject with an older ap-
parent skin age when provided images of two sub-
jects that have the same chronological age.

5 Conclusion

We present a novel method for estimating appar-
ent facial skin age using a set of region-specific CNNs
for feature representation, in conjunction with region-
specific SVM regression models. Due to the lack
of both standards for defining skin age, as well as

benchmark datasets with labeled ground-truth on ap-
parent regional skin age, we introduce a progressive
fine-tuning scheme for training region-specific CNNs.
We have shown positive agreement with human raters
for ranking the skin age of subjects with the same
chronological age. For future work, we believe that
datasets with standard quantitative assessments of
region-specific apparent facial skin age (e.g., through
psychophysical or clinical approaches) will significantly
improve progress in this relatively nascent research
area.
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