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Abstract

We propose an efficient method for extracting pa-
rameters of elliptic regions in digital images. Only
one 2-dimensional accumulator array A(ρ, θ) is used
for Hough voting, defined by voting angle θ and voting
distance ρ. For each voting angle θ, the voting distance
ρ is considered to be a stochastic variable, where voting
values A(ρ, θ) define the probabilistic weights.

We state how the statistical variance is related to the
major axis, minor axis, and direction of an elliptic re-
gion, and also how the statistical mean is related to the
centre; we provide two relationship functions in image
space. After voting, a linear function and a quadratic
function are fitted in the parameters space. The ma-
jor axis, minor axis and direction are computed based
on the coefficients of the fitted quadratic function. The
centre is determined by using the coefficients of the fit-
ted linear function.

The proposed method is tested on synthetic images
and real-world images. Experimental results show that
the method extracts accurately parameters of elliptic re-
gions, even in noisy and low-resolution images.

1 Introduction

An accurate extraction of ellipse parameters in real
images is a challenge due to the presence of image noise,
shape defects, edge blurring, or poor resolution [1, 2,
3]. For example, Fig. 1 shows on the left an image of
a human’s pupil recorded by a special infrared CCD
video camera [4]; on the right, two extracted ellipses
are shown; a pupil is more accurately approximated by
an ellipse rather than just by a circle.

Many methods for ellipse extraction have been pro-
posed [5]. These methods can be categorized into
three types of approaches: Least-square fitting tech-
niques, Hough-transform methods, or edge-following
algorithms.

Least-square fitting methods are based on a mini-

misation between contour points and an elliptic hy-
pothesis [6, 7, 8, 9], including algebraic fitting, orthog-
onal least-square fitting, or maximum-likelihood esti-
mations. Fitting algorithms are sensitive to noise, but
may be successful for only partially visible elliptic con-
tours.

Hough-transform (HT) methods map the ellipse-
extraction problem into a peak-seeking problem in pa-
rameter space. A base-line HT for ellipse extraction ap-
plies a 5-dimensional (5D) parameter space. This im-
plies excessive computation and storage requirements.
A large diversity of variants has been proposed to im-
prove the performance of the base-line HT for ellipse
extraction.

A randomized Hough transform selects randomly
groups of 3 or 5 non-collinear points to vote for cells in
parameter space [10, 11]. The randomized HT reduces
the computation time. It still uses a 5D accumulator
array.

Geometric properties of the ellipse are exploited to
reduce the dimension of the parameter space [12, 13,
14]. Due to results obtained, it appears difficult to
extract accurately geometric properties when following
this direction in noisy images or for cases of defective

Figure 1. Extracted ellipses for an image of a hu-
man’s pupil; the larger one supports an accurate
measurement of the size of the pupil.
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ellipses.
Edge-following methods detect arc segments [15, 16],

then group those segments into elliptic arcs [17, 18],
and fit an ellipse to the arcs. Edge-following meth-
ods are time-efficient. They depend on the quality of
detected arcs, and they do not work well in cases of
defective ellipses.

In order to extract parameters of elliptic regions in a
low-quality image, this paper outlines a novel method
for ellipse extraction. We only use a 2D parameter s-
pace for Hough voting. The dimensions of this Hough
space are defined by voting angle and voting distance.
The voting distance is considered to be a stochastic
variable. We compute the statistical mean and the
variance for this variable, for different voting angles.
The ellipse parameters are extracted by fitting a lin-
ear function and a quadratic function to the computed
statistical characteristics.

The remainder of the paper is organized as follows.
Section 2 describes the Hough voting and the prob-
abilistic distribution of voting distances. Section 3
presents the parameter-extraction technique of an ellip-
tic region by fitting two functions. Section 4 tests the
proposed methods by providing experimental results.
Section 5 is our conclusion.

2 Voting Analysis

Instead of a 5D accumulator array, we only use a
2D array, with dimensions defined by voting distance
ρ and voting angle θ, as already well-known from the
extraction of line segments or linear regions in images.

2.1 Hough Voting

A point (x, y) in the image space votes for a sine-
curve in the 2D parameter space using the following
equation

ρ = x · cos θ + y · sin θ (1)

For every pixel in the region of interest in the image
space, the voting distances ρ with respect to different
voting angles θ are computed, and corresponding cells
are voted for in the 2D accumulator array. Only the
introduced 2D accumulator array is maintained during
voting and searching.

Regarding a voting angle θ, the computed voting
distance ρ ranges from ρ1 to ρ2. The corresponding
voting value A(ρ, θ) increases from 0 to a maximum
gradually, then decreases to 0 gradually. The mean
voting distance m defines the maximum voting value;
the centre (x0, y0) of the elliptic region votes for m.
This is shown in Fig. 2.

For a voting angle θ, we consider the voting distance
ρ as a stochastic variable. The voting values A(ρ, θ)
define the probabilistic weights of this variable.

Figure 2. Voting analysis in image space and pa-
rameter space. Top: Voting distances ρ with re-
spect to angle θ in image space. Bottom: Voting
distribution of θ0 and θ columns in parameter s-
pace; the darker the cell, the bigger is the voting
value.

2.2 Probabilistic Distribution

The direction of the ellipse is supposed to be θ0. Let
the difference between θ and θ0 be ∆θ = θ − θ0, and
the difference between ρ and m be ∆ρ = ρ − m. In
addition, S denotes sin ∆θ and C denotes cos ∆θ. The
voting value A(ρ, θ) of cell (ρ, θ) is given as follows:

A(ρ) =
2ab ·

√
a2S2 + b2C2 − ∆ρ2

a2S2 + b2C2
(2)

with a and b defining the lengths of the axes of the
elliptic region. The equation is illustrated in Fig. 3.

The voting value A(ρ, θ) is considered to be the
weight. The probabilistic distribution p(ρ) is defined
as follows:

p(ρ) =
A(ρ)

π · ab
(3)

We analyse the statistical mean m and variance σ2 of
the voting distance ρ.



Figure 3. Probabilistic weights of voting dis-
tances.

2.3 Linear Functional Relationship

Because of the geometric symmetry of the elliptic re-
gion, the centre (x0, y0) contributes to the mean voting
distance m.

Regarding voting angle θ, we have the following e-
quation:

m = x0 · cos θ + y0 · sin θ (4)

This equation is linearized by using the following
transform:

m/cos θ = y0 · tan θ + x0 (5)

The functional relationship between m/ cos θ and tan θ
is linear.

2.4 Quadratic Functional Relationship

Based on the probabilistic distribution of the voting
distance, given voting angle θ, the statistical variance
σ2 equals

σ2 =
b2 + (a2 − b2) sin2 ∆θ

4
(6)

We only consider voting angles that are close to θ0,
thus, sin(∆θ) ≈ ∆θ. Therefore,

σ2 ≈ b2 + (a2 − b2)∆θ2

4

=
a2 − b2

4
θ2 − 2θ0(a2 − b2)

4
θ +

b2 + (a2 − b2)θ20
4

(7)

The functional relationship between σ2 and θ is a
quadratic polynomial curve.

3 Ellipse Extraction

The ellipse parameters are extracted based on the
statistical characteristics of columns in the parameter
space.

We compute the statistical mean m and the statis-
tical variance σ2 of columns around a local peak. A
linear function and a quadratic function are fitted nex-
t. The centre of the elliptic region is determined by
the coefficients of the fitted linear function. The direc-
tion, major axis and minor axis of the elliptic region
are solved using the coefficients of the fitted quadratic
function.

3.1 Statistical Mean and Variance

After voting, a local peak is found in the 2D accu-
mulator and is denoted by (θpeak, ρpeak).

In columns θi, which are near θpeak in the 2D accu-
mulator array, the voting mean and variance are com-
puted:

mi =

∑
[ρ ·A(ρ, θi)]∑
A(ρ, θi)

σ2
i =

∑
[(ρ−mi)

2 ·A(ρ, θi)]∑
A(ρ, θi)

(8)

where A(ρ, θi) is the voting value corresponding to vot-
ing distance ρ in column θi.

3.2 Linear Function Fitting

Based on the statistical means mi of columns θi, a
linear function is fitted to the pairs (mi/ cos θi, tan θi).
We obtain:

g : m/cos θ = g(tan θ)

, g1 · tan θ + g0 (9)

According to Eqs. (5) and (9), the centre (x0, y0) of
the elliptic region is as follows:

x0 = g0 and y0 = g1 (10)

3.3 Quadratic Function Fitting

Having the statistical variance σ2
i of column θi, a

quadratic function is fitted to pairs (σ2
i , θi). We obtain:

f : σ2 = f(θ)

, f2 · θ2 + f1 · θ + f0 (11)

Based on Eqs. (7) and (11), there are the following
equations:

(a2 − b2)/4 = f2

−2(a2 − b2)θ0/4 = f1(
b2 + (a2 − b2)θ20

)
/4 = f0 (12)



Table 1. Comparison of detection accuracies.

Detection errors
Fitting Edge following 2D-space HT

Centre Major Minor Direction Centre Major Minor Direction Centre Major Minor Direction

Normal 0.04 0.04 0.02 0.04 0.76 1.12 0.45 0.74 0.04 0.67 0.02 0.10

Noise N/A 0.92 1.29 0.60 0.75 0.55 1.46 0.35 0.94

Low resolution 2.13 0.22 0.13 0.24 N/A 2.16 0.97 0.13 0.27

By solving the above equations, the direction, major
axis and minor axis are given by

θ0 = −f1/(2f2) (13)

a = 2

√
f2 + f0 −

f21
4f2

(14)

b = 2

√
f0 −

f21
4f2

(15)

4 Experimental Results

The proposed method for elliptic regions detection
is tested on synthetic and real-world images.

4.1 Test on Synthetic Images

We generate randomly synthetic 500 × 400 images,
each containing one elliptic region. The known pa-
rameters of the elliptic regions are recorded as ground
truth.

Ellipse extraction results are compared with those of
a fitting method [8] and with those of an edge-following
method [17].

In order to test the robustness with respect to image
noise and low resolution, noisy pixels are added, and
the image is down-sampled and again up-sampled. An
example of a noisy and low resolution image is shown
in Fig. 4.

One hundred synthetic images (without any prepro-
cessing) are processed using the fitting method, the
edge-following method and the proposed 2D-space HT
method. We compare results under different condi-
tions. First, we consider the images without any noise
(case “Normal”). Then, images are distorted by pro-
ducing 2,000 noisy pixels (case “Noise”). Finally, we
use a low resolution image that is down-sampled and
up-sampled by factor 4 (case “Low resolution”). Mean
detection errors are listed in Table 1.

All three methods can extract accurately the param-
eters of an elliptic region for “normal” images. The
fitting method does not work well for a noisy image,
and the edge-following method is not applicable for the
considered low-resolution images. The 2D-space HT
method can extract the elliptic region both in noisy
images as well as in the considered low-resolution im-
ages.

Figure 4. An example of noisy and low-resolution
image with an elliptic region.

Figure 5. Extraction of an elliptic region in an
image with heavy noise.

4.2 Test on Real-world Images

Figure 1 showed results when applying the proposed
2D-space HT method. We tested the proposed method
also on low-quality ultrasound images.

An example of such an image with heavy noise is
shown in Fig. 5. The 2D-space HT method extracts
the elliptic region in spite of an obscure contour and
heavy noise.

Figure 6 shows a low-resolution image after being
down-sampled and up-sampled. Although the image



quality is low, the 2D space HT method can extract
the elliptic region.

Figure 6. Extraction of an elliptic region in a low-
resolution image.

5 Conclusions

This paper proposes a closed-form solution for pa-
rameters extraction of elliptic regions using a 2D Hough
transform. By analysing the voting results in the
Hough space, a linear function and a quadratic func-
tion are deduced. By computing means and variances
of columns in parameter space, two functions are fit-
ted. The centre of the elliptic region is calculated by
the coefficients of the fitted linear function; the direc-
tion, major axis and minor axis are computed by the
coefficients of the fitted quadratic function. The ex-
tracted parameters of elliptic regions are also accurate
for low-quality images.
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