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Abstract

We address the problem of conditional image genera-
tion of synthesizing a new image of an individual given a
reference image and target pose. We base our approach on
generative adversarial networks and leverage deformable
skip connections to deal with pixel-to-pixel misalignments,
self-attention to leverage complementary features in sepa-
rate portions of the image, e.g., arms or legs, and spectral
normalization to improve the quality of the synthesized im-
ages. We train the synthesis model with a nearest-neighbour
loss in combination with a relativistic average hinge adver-
sarial loss. We evaluate on the Market-1501 dataset and
show how our proposed approach can surpass existing ap-
proaches in conditional image synthesis performance.

1 Introduction

Conditional pose generation refers to synthesizing a new
image of a person, given a reference image of the person and
a target pose. It has diverse applications such as generating
animations from single images and visualizing fashion out-
fits. Due to having to generate large occluded parts of the
image, it poses a very challenging problem. Not only is it
necessary to synthesize new limbs, but it is also important
to generate novel views of the garments worn by the person.

In this paper, we tackle this problem by building on the
Deformable GAN [12] model, which is an approach that
uses a fully convolutional network with deformable skip
connections. We use this architecture as a base, and pro-
pose incorporating self-attention [15], which can leverage
the similarity between non-local parts of the image, unlike
standard convolution operations. Furthermore, we show the
advantage of using the nearest-neighbor loss in combina-
tion with a relativistic average hinge adversarial loss [5],
jointly with spectral normalization [9], instead of training
with a nearest-neighbor and adversarial loss. Our approach
is able to generate new images of persons with given poses
by extracting the pose information of the input image using
off-the-shelf 2D pose estimators. We base our approach on
adversarial training, which has shown good results in a va-
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Figure 1. The conditional pose generation task. Given
a reference image of a person, the pose of the person,
and a target pose, we generate an image of the person
in the target pose. In this work, the pose of the person
in the input image is automatically extracted from the
input image.

riety of conditional image generation tasks, such as image
inpainting [3].

We evaluate our approach on the Market-1501 dataset,
and compare against existing approaches. Results show that
our model compares favorably with existing approaches,
evaluated with image generation metrics such as the Incep-
tion score.

2 Related Work

Recently, Generative Adversarial Networks (GANs) [2]
have become one of the most popular deep network-based
generative models, which have been applied to various im-
age generation tasks, such as image super-resolution [7] and
image inpainting [3]. In particular, Isola et al. [4] proposed
a framework of conditional GANs for image translation,
which converts a given image into another image. Although
it shows several plausible image translations such as maps
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Figure 2. Task overview. The generator network is trained using nearest-neighbor loss and adversarial loss with correct
images.

to aerial photos, it has difficulty in addressing large defor-
mations between the input and output images, because the
network is trained to spatially share the low-level informa-
tion between the paired images.

For image translation with large spatial deformations,
Ma et al. [8] proposed the pose-guided person generation
network which allows synthesizing person images in arbi-
trary pose. This approach contains two stages: the first stage
focuses on pose integration and generation based on the U-
Net [10]-like convolutional network; and the second stage
refines the initial result via adversarial training. Siarohin et
al. [12] further improved the pose-based human image gen-
eration by incorporating deformable skip connections that
can move local information according to the structural de-
formations. They also introduced a nearest-neighbor loss,
instead of the more common losses such as L1 and L2, in
order to match the details of the model outputs and the tar-
get images. Unlike the previous methods, it can be trained
end-to-end, while achieving qualitatively better results.

3 Approach

Our approach builds on Deformable GAN (DGAN) [12]
and improves it by incorporating spectral normalization [9]
and self-attention [15], as well as changing the loss function
from the standard Generative Adversarial Network (GAN)
to the Relativistic Hinge GAN [5].

3.1 Deformable GAN

The Deformable GAN extends the Generative Condi-
tional Networks by incorporating deformable skip con-
nections in the generator network and employs a nearest-
neighbor loss instead of the commonly used L1 and L2

losses. Our model is based on the Deformable GAN model
and unless we note otherwise, we use the same architecture.

For a given input person image and a target pose, DGAN
first extracts the pose of the person in the form of 2D skele-
ton with a human pose estimator model [1]. The data is
then processed with a fully convolutional network encoder
to obtain a feature representation of the input image, the ex-
tracted pose, and the target pose. Afterwards, using the pose
information for each specific body part, an affine transfor-
mation is computed and applied to “move” the feature-map
content corresponding to that body part.

For training, instead of the commonly used L1 and L2

losses, a nearest neighbor loss is used. For an input image
x and a target image x∗, it is defined as

LNN(x,x
∗) =

∑
p∈x∗

min
q∈N(p)

‖Cx∗(p)− Cx(q)‖1 , (1)

where N(p) is a neighborhood of p, and pre-trained
VGG19 [13] network with respect to the spatial position p.

In addition to the nearest-neighbor loss LNN, a condi-
tional adversarial loss is used and defined as

LcGAN = E(x,x∗)∈X [logD(x,H,x∗,H∗)]

+ E(x,x∗)∈X,z∈Z [log(1−D(x,H, x̂, Ĥ) , (2)

where E denotes the expectation value, X is the set of train-
ing pair images, D is the discriminator model that outputs a
probability, x̂ = G(z,x,H,H∗), G is the generator model,
Z is a random distribution, and H , H∗, and Ĥ are the 2D
skeletons of x, x∗, and x̂, respectively.

The objective function for optimizing the Deformable
GAN model thus becomes:

arg min
G

max
D

LcGAN(G,D) + λLNN(G) , (3)



where LNN(G) = E(x,x∗)∈X,z∈ZLNN(x̂,x
∗) .

3.2 Spectral Normalization

Spectral normalization [9] normalizes the spectral norm
of the weight matrix W of a layer so that it satisfies the
Lipschitz constraint σ(W ) = 1:

W̄SN(W ) =
W

σ(W )
(4)

Instead of naı̈vely applying singular value decomposition
to compute σ(W ), the power iteration method is used to
estimate σ(W ) with a small computational footprint. The
spectral normalization is used in both the discriminator and
the decoder part of the generator, and improves results by
decreasing the degradation of the error signal during back-
propagation.

3.3 Self-Attention

Convolutional layers process information in only a local
neighborhood, making fully convolutional networks com-
putationally inefficient for modeling long-range dependen-
cies in images, e.g., human arms or legs. In a self-attention
layer [15], the image features from the previous layer φ ∈
RC×N with N channels are first transformed into two fea-
tures spaces g(φ) = Wgφ and h(φ) = Whφ, where Wg

and Wh are learnable matrices. Let spatial locations or re-
gions indexed by u, v. Then the attention map β is defined
by:

βv,u =
exp(su,v)∑N
u=1 exp(suv)

, suv = g(φu)
ᵀh(φv). (5)

Then βv,u indicates to what extent the layer attends to the u-
th location when synthesizing the v-th region. The output of
the layer o = (o1, . . . ,oN ) ∈ RC×N can then be computed
as

ov = γ

N∑
u=1

βv,uWoφu + φv , (6)

where Wo is another learnable matrix and γ is a param-
eter that is initialized to 0 and gradually increased during
training to learn to assign more weight to non-local fea-
tures. The self attention learns the parameters Wg ∈ RC̄×C ,
Wh ∈ RC̄×C , and Wo ∈ RC×C with back-propagation dur-
ing training.

We add a self-attention after each of the last two layers of
the generator’s decoder and after each of the last two layers
of the discriminator.

3.4 Relativistic Average Hinge Adversarial Loss

Training with conditional adversarial loss is done with a
discriminator that is being trained to classify whether the in-
put is real or fake with negative log-likelihood. Relativistic
adversarial losses [5] optimize the probability that a given

real data is more realistic than a randomly sampled fake data
and vice versa. This leads to more stable and robust training
in general. Relativistic adversarial training can be done by
modifying the output of the discriminator D(·) to be

D̄(x′) =

{
D(x′)− Ex̂∈XTD(x̂) if x′ is real
D(x′)− Ex∗∈XI

D(x∗) if x′ is fake ,
(7)

where we denote the set of input images as XI and the set
of target images as XT, with X = (XI, XT).

The discriminator and generator losses can then be writ-
ten as

LRH
D (G,D) = Ex∗∈XT

[
max(0, 1− D̄(x∗))

]
+ Ex∈XI

[
max(0, 1 + D̄(x̂))

]
LRH
G (G,D) = Ex∈XI

[
max(0, 1− D̄(x̂))

]
+ Ex∗∈XT

[
max(0, 1 + D̄(x∗))

]
. (8)

We note that this leads to a min-min problem, unlike the
standard adversarial loss formulation, which leads to a min-
max problem.

3.5 Training

Replacing the DGAN objective function (3), we train our
model by using the nearest-neighbor loss LNN in conjunc-
tion with the relativistic average hinge adversarial loss by
minimizing

argmin
G,D

LNN(G) + λ1LRH
G (G,D) + λ2LRH

D (G,D) (9)

where λ1 and λ2 are two hyperparameters.

4 Experimental Results

We evaluate using the Market-1501 [16] dataset which
contains 32,668 images of 1,501 individuals captured by 6
different surveillance cameras. Following [12], the dataset
is cleaned up by automatically removing images in which
no individual is detected using HPE [1], and training with
pairs of images of the same individual in two different
poses. This results in 263,631 training pairs, of which we
use 2,000 for validation and 10,000 for testing. No person
appears in more than one splits. In contrast to [12], which
trained all models for a fixed number of iterations, we train
for 50,000 iterations and use the model that has the largest
Inception Score (IS) [11] on the validation set which we
then use to evaluate on the testing images. This reduces the
effect of the stochastic nature of training generative adver-
sarial network models during evaluation. We evaluate using
three metrics, Inception Score (IS) [11], SSIM [14], and
L1 distance, between the ground truth and the output of the
model. We use λ1 = λ2 = 50 for our model and train by
optimizing Eq. (9) with ADAM [6].



Table 1. Comparison with existing approaches.
We compare with the results of Defomable GAN
(DGAN) [12], both the result reported in their paper
trained for 90 epochs, and the result of retraining their
model and using validation to choose the best model.
The best results are highlighted in bold.

Model IS SSIM L1

DGAN [12] (paper) 3.185 0.290 -
DGAN [12] (retrained) 3.272 0.274 0.292

Ours 3.402 0.279 0.288
Real-Data 3.86 1.00 0.00

Table 2. Ablation results. We compare different vari-
ants of our proposed approach. SN: Spectral Nor-
malization, RH: Relativistic Hinge loss, SA: Self-
Attention. The best results are highlighted in bold.

Model IS SSIM L1

Ours SN 3.066 0.289 0.289
Ours RH 3.122 0.283 0.289
Ours SA 3.121 0.278 0.295

Ours SN+RH 2.973 0.296 0.288
Ours SA+SN+RH 3.402 0.279 0.288

4.1 Comparison with existing approaches

We compare against the approach of Deformable GAN
(DGAN) [12] by retraining their model and using the val-
idation set to choose their best model. For reference, we
also show their results as reported in their paper. Results are
shown in Table 1. Retraining DGAN shows improved per-
formance in Inception Score (IS), although SSIM decreases.
Our approach outperforms significantly in IS, and although
it beats the SSIM of the retrained model, it underperforms
in comparison to the originally reported values. However,
we found that removing the self-attention layers improves
the SSIM at the cost of IS, outperforming the original val-
ues reported in [12].

4.2 Ablation study

We perform an ablation study to analyze the different
effects of the components of our model. We show the re-
sults in Table 2. We can see that the combination of all
the elements gives a large boost in IS, while not using Self-
Attention (SA) improves SSIM.

4.3 Qualitative results

We show some qualitative results of our approach in
Fig. 3. The output result shows that the overall quality of
the image is improved. In particular, the quality of back-
ground improved by using Self-Attention.

5 Conclusions

We have presented an approach for the conditional gen-
eration of images of individuals given a single reference im-
age and a target pose. Our model incorporates deformable
skip connections and self-attention, and is trained with a
nearest-neighbour loss in combination with a relativistic av-
erage hinge adversarial loss, using spectral normalization.
We have evaluated on the Market-1501 dataset and results
compare favorable with existing approach.
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