
A very concise feature representation for time series classification
understanding

Pattreeya Tanisaro
University of Osnabrück, Germany

Gunther Heidemann
University of Osnabrück, Germany

Abstract

One major problem of time series analysis, partic-
ularly of a multivariate time series, is to find their
feature representations. Especially, with the emerging
of deep recurrent neural networks (RNNs), researchers
opt to train the networks with raw signals by using an
end-to-end framework to achieve the highest classifi-
cation accuracy. Their works focus on modifying the
network models and fine-tuning millions of hyperpa-
rameters; however, they lack the required level of un-
derstanding of the intrinsic properties of the data. In
our work, we adopted a technique for dimensionality
reduction of non-time-series to transform the time se-
ries data into small sets of feature representations. Our
proposed technique allows the analyst to easily visual-
ize the feature representations of the data and detect
an instance which has a potential to cause a test fail-
ure. We demonstrated the robustness of our technique
by subjecting the extracted features to a conventional
classification approach such as Random Forest. The
datasets used for the evaluation of this task are from
the known benchmarking of 15 multivariate time series
datasets and two Motion Caption datasets of 27 and 65
actions. The classification results were compared with
the outputs from the Echo State Networks (ESNs) and
the deep Bidirectional Neural Networks (BRNNs).

1 Introduction

With the emergence of various deep neural network
frameworks, the classification of time series has be-
come more efficient than ever. However, a challenge in
time series classification is to find a data representation
which can be interpreted or explained to an audience
when the test fails. For time series analysis this is a key
issue which allows an analyst to detect the anomalies
instead of obscuring them by permitting the models
to overfit the data. A general approach to visualize
a time series is to employ a line graph. However, the
line graph does not work well for multivariate time se-
ries where inter-dependencies between many variables
exist. A much more complex situation occurs if the
data instances are not of equal length for many of the
data features in a large dataset. There is only one
known technique that lets a data analyst inspect the
feature representation of the multivariate time series,
namely the unthresholded recurrence plots (RPs) [4].
The RP or distance plot is heavily used for the visual-

ization of time series because it allows any high dimen-
sional phase space trajectories to be visualized in sub-
spaces through a two-dimensional representation. It
exhibits reoccuring phase space trajectories of dynamic
systems. This technique has been employed as an ac-
tion descriptor for view-independent action recognition
in combination with the Bag-of-Features obtained from
the Histogram of Oriented Gradients (HOG) [5]. Nev-
ertheless, the downside of this approach is that the
lengths of all motion recordings in the experiment must
be truncated to an equal unit length in order to get
the fixed window size. Therefore, it is not suitable for
data with unequal lengths. In addition, RPs cannot be
viewed together in the same coordinate system and it
requires a lot of work to examine each data sequence
individually.

In our work, we demonstrate a representation of a
time-dependent data to be captured in a lower dimen-
sional space where it can be understood by a traditional
classification approach such as Random Forest (RF),
and is easily perceived by a data analyst. Although
the applied dimensionality reduction techniques them-
selves are not new, however to the best of our knowl-
edge, there was no attempt to express the temporal in-
formation in a way which allowed the time series to be
inspected simultaneously in the normal Cartesian coor-
dinate system. The classification outputs are tested on
two kinds of datasets i) general multivariate time series
of 15 datasets and ii) motion capture (MoCap) of two
datasets for action recognition used in [11]. Since the
evaluation of this tasks should focus on the general-
ization of action recognition, therefore we exclude the
test subjects from the group of training subjects. The
other existing works, for instance, [3, 14] did not condi-
tion on separation of the subjects in their experiments;
hence, we implemented two types of RNNs, a reservoir
computing RNN: the ESN, and a gradient-based RNN:
the BRNN, for the comparison.

2 Dimensionality Reduction of Time Series

Let p be the total number of data instances in the
dataset, and for any given data instance i, the set of
individual data sequences is specified by {Xi} where
i ∈ {1, .., p}. For any high-dimensional data sequence
Xi with a fixed number of features m and arbitrary
length Ti, we can interpret Xi as a real-valued matrix
X with a dimension m × Ti as illustrated in Figure
1a. Pick the number of selected components cn for

16th International Conference on Machine Vision Applications (MVA)
National Olympics Memorial Youth Center, Tokyo, Japan, May 27-31, 2019.

© 2019 MVA Organization

02-21

X
i

· · ·
· · ·

X
p

m

T1
Ti

Tp

p

(a)

F1(X
i)

F1(X
p)

· · ·
· · ·

m

c1

p

(b)

· · ·Fn
i

Fn
p

cn

1

p

(c)

Figure 1: Transformation of time-dependent data into subspaces. (a) p instances of time series of m features
with arbitrary sequence lengths Ti. (b) Results after the first transformation of F1. From this point onward,
the arbitrary size of “time dimension” Ti has become all equal with the selected principal components c1. This
new feature representation of Xi can be understood by the conventional classification approach. (c) The
data after an arbitrary nth transformation giving each signal instance of size cn which can portray a small feature
representation and its first two or three components can be projected onto the XY- or XYZ-plane.

any manifold learning F to matrix Xi where n is the
number of manifold learning technique used. For the
chosen first principal components c1 at n=1, we obtain
F1(Xi) as illustrated in Figure 1b where {Ti} ≥ c1.
Hence, to apply n-times of dimension reduction of F to
Xi for cn components, namely Fn(Fn−1(...F1(Xi)...))
as shown in Figure 1c, requires:

Ti ≥ c1 ∀i ∈ {1, . . . , p} and (m · c1) ≥ c2... ≥ cn (1)

Usually, the sequence length of any signal instance
is much larger than the selected number of principal
components, that is Ti � c1 ∀i ∈ {1, . . . , p}. Before
applying the first order transformation, n = 1, we may
build a feature vector by normalizing each Xi

j,k where
j ∈ {1, ...,m} and k ∈ {1, ..., Ti} as:

Xi
j,k ⇐ Xi

j,k − X̄i
j (2)

where X̄i
j is the average over the sequence length

Ti of feature j. Likewise, for the case of the trajecto-
ries of MoCap dataset, we first normalize the skeleton’s
joint positions which were computed by the marker po-
sitions following [13] by subtracting from each joint po-
sition the position of the center of the torso. The nor-
malization by subtracting the mean is optional but is
proved to enhance the visualization in many cases. For
the case of different scaling of features, the rescaling
prior to applying the manifold learning can be benefi-
cial. However, normalizing time series data by dividing
it by its standard deviation does not improve our vi-
sualization in general. Similar evidence was reported
in [12] for human motion classification. After apply-
ing the first transformation of F1 on each normalized
Xi, the data sequence Xi can be newly represented
as F1(Xi) ∈ Rm×c1 as depicted in Figure 1b. The
time axis now has been replaced with the number of
principal components of the first transformation. The
feature vector for the second order transformation may
be arranged using a concatenation of an average vector

to F1(Xi) as [X̄i
j ;F1(Xi)]. After a second order trans-

formation, F2(F1(Xi)), the new matrix can be shortly
written as F2

i ∈ R1×c2 which is depicted in Figure 1c.

3 Experimental Setup

3.1 Multivariate Time Series Datasets.

For our experiment, we took fifteen datasets of the
multivariate time series collected in [1]. These datasets
were used to benchmark the classification methods in
[1, 9, 7, 6]. The characteristics of each dataset are
shown in Table 1 are i) the number of the attributes,
ii) the lengths of sequences in the dataset, iii) the num-
ber of output classes, iv) the number of training data
and v) the number of testing data. We grouped these
datasets into four categories according to the levels of
difficulty based on the classification results from DTW
[1] which is the state-of-the-art approach for time se-
ries classification. These four levels are i) very diffi-
cult to solve datasets which have an error rate greater
than 20%. These datasets are indicated with the deep
blue squares () in front of the dataset names. ii) diffi-
cult datasets are marked with orange circles (), which
have an error rate in the range of (10-20]%. iii)normal
difficulty with the error rates in the range of (5-10]%.
The datasets are marked with the green triangle (),
and iv) easy datasets indicated with pink diamond ().
They have the error rates not higher than 5%.

3.2 Motion Capture Datasets.

We extended our experiment by selecting two dif-
ferent MoCap datasets, the UTD-MHAD [2] and the
HDM05 [8] to demonstrate the effectiveness of our pro-
posed technique. The test subjects were excluded from
the training set to examine the generalization of action
recognition.

UTD-MHAD consists of 27 different actions per-
formed by eight subjects. Each subject repeated the

same action four times. The dataset contains a total
of 861 trials or data instances, where three sequences
were corrupted and removed from the dataset on the
official website. The training was performed on six sub-
jects, and two subjects were left out for the test. The
recognition rate was reported on an average of 28 com-
binations. This dataset was recorded using 20 markers.

HDM05 was originally made up of 130 classes con-
sisting of five subjects performing actions with and
without repeating the same cycles separately. This cre-
ated a total of 2343 instances. We followed [3, 14, 11]
in grouping non-repetitive and repetitive motions to-
gether yielding 65 actions. This dataset has been heav-
ily biased on some actions and their lengths. For ex-
ample, walk and elbowToKnee contain 94 and 80 trials,
respectively; while for about 20 actions have less than
20 trials, i.e., throwBasketball, throwFarR and jump-
Down having only 14 trials each. Nonetheless, since
we focused on the action recognition of unseen sub-
jects, four subjects were used in the training set and
one subject was used for the test. We reduced the
original number of markers to 19, where some nearby
sensors e.g., on the spine were merged.

3.3 Configurations of the Classifiers

We employed two known linear and non-linear man-
ifold learning such as PCA and Kernel PCA in order to
get the features F1(Xi) in combination with RF with
50 and 100 trees for classification. Our proposed ap-
proach is abbreviated as DRe in the results. To display
all data simultaneously in two- and three-dimensional
projections, we select various manifold learning algo-
rithms F2 for the best visualization. For the setup of
RNNs, we adopted many configurations and took the
one with best output performance. The ESN config-
urations in this experiment followed the guideline in
[10]. The number of neurons was varied in the range of
200-600 neurons with 10, 30 and 50% sparsity. We also
applied the spectral radii of 1.0 and 5.0, a leaky rate of
0.1 and 0.9 and a fixed regularization coefficient of 0.1.
For BRNNs, we created more than one hundred config-
urations with various depths and widths of BRNNs and
picked the best models shown in Table 1. Following the
setup of deep BRNN geometries in [11], we varied the
size of the networks in the range of 2×{200−600} neu-
rons. The model with one layer of BRNNs with 2×500
neurons is presented as BR500, where 500 indicates the
number of neurons in one direction. Therefore, for the
two hidden layers of BRNNs with 100 neurons in one
direction for each layer is written shortly as BR2L·100

and so on. For three hidden layers of BRNNs, we sim-
ply took the best outcome from several configurations
and referred to it as BR3L. Furthermore, we experi-
mented using both GRUs and LSTMs as neurons.

4 Experimental Results and Discussion

4.1 Multivariate Time Series

Table 1 shows the error rates of 15 datasets from
ten classifiers. The results from left to right are, DTW
and LPS taken from [1] and our implementation as
the following: ESN , BRNNs with one hidden layer
(BR1L), four strategies of BRNNs with two hidden
layers (BR2L·100, BR2L·150, BR2L·250, and BR2L·500),
BRNNs with three hidden layers (BR3L), and our pro-
posed method (DRe). Next to the results of DRe
appears one of the two symbols, and , to indi-
cate whether it makes sense () to apply the dimen-
sionality reduction to the dataset. We prefer ()
the DRe when the following two conditions meet: i)
its error rate is lower than two third among DTW ,
LPS and ESN , and ii) its error rate is less than 10%.
The LPS generally performs much better than DTW
and has two outstanding results which are difficult
to be solved by other classifiers; they are Libras and
UwaveMTS. The ESN also gives satisfactory results
for most datasets and becomes the winner for Char-
Trajectories and JapaneseVowels; nonetheless, it has a
problem to classify three datasets marked with . The
BRNN1L is the winner for most datasets. Interest-
ingly, however, all BRNNs perform worst on the Net-
workFlow. This is probably caused by the character-
istics of the attributes. The NetworkFlow represents a
network traffic protocol where a series of network pack-
ets defines a sequence. Each packet consists of four
attributes which are used to identify the applications
that generated the traffic flow. These attributes are the
packet size, transfer direction (either 0 or 1), payload
and the duration. Whereas the payload and packet size
are in the magnitude of a few thousands but the direc-
tion can be either 0 or 1. Therefore, this might cause
a problem for the gradient computation. Furthermore,
it is important to note that the BR1L performance is
better than of the deep BRNNs for most datasets here.

For DRe, five datasets are considered unsuited ()
to be processed by DRe method. This is due to: i) the
transformation of the matrix of m×Ti to m×c1 which
is constrained by Ti and mi, and ii) the characteristic
of all data classes which should be captured by m× c1.
That is m× c1 should be sparse to be captured by RF
or specifically “sufficiently greater” than the number of
classes. These two restrictions can be explained by the
characteristics of datasets, which are: i) restricted by
Ti, i.e., ArabicDigits which has the shortest length of 4
yielding a matrix of maximum size 13×4 for classifying
10 classes, or ii) restricted by m if the dataset has a
small number of attributes but requires many output
classes, for instance, CharTrajectories which has 3 at-
tributes for 20 classes, EGG which has 2 attributes for
2 classes, Libras which has 2 attributes for 15 classes
and UwaveMTS which has 3 attributes for 8 classes.
Hence, we can easily notice that the pleasing results

Dataset nAttr Length nClass nTrain nTest DTW LPS ESN BR1L BR2L·100 BR2L·150 BR2L·250 BR2L·500 BR3L DRe

ArabicDigits 13 4-93 10 6600 2200 0.092 0.029 0.070 0.003 0.010 0.016 0.009 0.010 0.007 0.244

AUSLAN 22 45-136 95 1140 1425 0.238 0.246 0.094 0.061 0.178 0.109 0.061 0.060 0.095 0.096

CharTrajectories 3 60-182 20 300 2558 0.033 0.035 0.023 0.033 0.043 0.046 0.045 0.042 0.048 0.186

CMUsubject16 62 127-580 2 29 29 0.069 0.000 0.000 0.000 0.172 0.379 0.034 0.483 0.000 0.000

DigitsShape 2 30-98 4 24 16 0.069 0.000 0.000 0.000 0.172 0.379 0.034 0.483 0.000 0.000

ECG 2 39-152 2 100 100 0.150 0.180 0.270 0.160 0.210 0.200 0.200 0.160 0.210 0.250

JapaneseVowels 12 7-29 9 270 370 0.351 0.049 0.011 0.016 0.024 0.032 0.041 0.027 0.022 0.043

KickvsPunch 62 274-841 2 16 10 0.100 0.100 0.100 0.200 0.500 0.500 0.500 0.500 0.400 0.000

Libras 2 45 15 180 180 0.200 0.097 0.206 0.156 0.328 0.272 0.322 0.250 0.256 0.617

NetworkFlow 4 50-997 2 803 534 0.288 0.032 0.034 0.779 0.779 0.779 0.779 0.779 0.779 0.028

PEMS 963 144 7 267 173 0.168 0.156 0.278 0.058 0.191 0.185 0.260 0.231 0.202 0.092

Shapes 2 52-98 3 18 12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

UwaveMTS 3 315 8 896 3582 0.071 0.020 0.089 0.039 0.155 0.133 0.051 0.041 0.044 0.551

Wafer 6 104-198 2 298 896 0.040 0.038 0.028 0.035 0.077 0.085 0.057 0.106 0.079 0.020

WalkvsRun 62 128-1918 2 28 16 0.000 0.000 0.000 0.000 0.000 0.188 0.000 0.188 0.000 0.000

Table 1: The characteristics of 15 datasets and their error rates in ten classifiers.

m

2 25 10 29 8 30 12 32 21 38

Figure 2: Feature vectors of ten instances of the DigitsShape dataset which have two attributes using PCA with two
principal components for the classification. Below each feature is the label of the corresponding instance indicated
with the number. Each labeled color matches each data class in Figure 3. The training data is presented using
circles () while the test data is presented using squares ().

8
30

10
29

830

1029

Figure 3: The two left images show the second order transformations of DigitsShape using only the first two
principal components projected on the two-dimensional plane. The first manifold learning for classification is the
PCA followed by two different second transformation approaches “for visualization in 2D projection” using PCA,
and MDS, respectively. Four labels, 8, 10, 29, 30 of class “2” (/) are enlarged to verify the conformity of their
feature representation as shown in Figure 2. The next two images are the projections of 640 instances (of training
and test data) of JapaneseVowels and 440 instances of PEMS (of 963 attributes for each instance).

of DRe are obtained for datasets which have many at-
tributes without restriction on the sequence lengths as
we can see the outstanding results from Wafer, PEMS
and NetworkFlow. Most important, the main benefit of
this approach is that we can extract a concise feature
which is understandable by the data analyst. Figure 2
shows the feature presentations of ten instances from
the DigitsShape of 2 attributes to classify 4 classes. Fig-
ure 3 shows visualizations on the Cartesian coordinates
of DigitsShape, JapanesesVowels and PEMS. Moreover,
we further investigate the three-dimensional projection
of 1194 instances of Wafer as displayed in Figure 4.

Ten corresponding feature representations of the Wafer
dataset are depicted next to its 2D projection on the
rightmost. The Wafer refers to a silicon wafer in a
semiconductor manufacture. Each instance consists of
six variables recorded during the etching process and
is marked as normal () or defective ().

4.2 Motion Capture

The error rates of two MoCap datasets of 27 ac-
tions of the MHAD and 65 actions of the HDM05 using
PCA for the transformation together with RF can be
found in Table 2. The outputs from BRNNs were ob-

1
3

18
23

29

32

430
432431

453

1

3

18

29

23

32

430

431

432

453

Figure 4: The visualization of projecting the features
into 3D space. The image on the left shows 1194 in-
stances of Wafer. The feature representations of ten
instances of Wafer are displayed on the right. The
numbers in front of the feature representations are the
instance’s ids for tracking them in the 3D space.

Dataset ESN BR1L BR2L·100 BR2L·250 BR2L·300 BR3L·200 DRe

MHAD27 0.167 0.100 0.213 0.086 0.127 0.162 0.196

HDM05 0.410 0.254 0.254 0.185 0.187 0.207 0.308

Table 2: The error rates of 27 actions in the MHAD
and 65 actions in the HDM05.

Figure 5: Selected actions of MHAD for visualization.
Left image is the result of a 2D projection of ten se-
lected actions and the right image is the result of 3D
projection of twelve actions.

tained by fine-tuning hyperparameters for more than
one hundred configurations. Although our approach is
not better than the BRNNs in general, its performance
is comparable. In addition, it took about 10 minutes to
complete 28 folds of training and testing the MHAD27,
45 minutes on the ESNs with 500 neurons on Intel i7-
3770 CPU 3.40GHz with 16 GB RAM running on one
core, while it took three and a half hours on Intel Xeon
3.70GHz 64GB RAM with GeForce GTX TITAN X for
one hidden layer of BRNNs of 2 × 500 neurons. The
results of DRe are reproducible and there is no need
to worry about fine-tuning the parameters.

Figure 5 shows the projections of two small sub-
sets of the MHAD. For the image on the left, the ac-

mm, dg

bd, tr

bk

mm, dg

bd, tr

bk

Figure 6: Two-dimensional projections of selected ac-
tions in the HDM05. When the actions have changed
between the two images on the left to the right, the dis-
tributions of the same actions remain the same. These
actions are jumpDown (), squat (→), hopLLeg (
→), walk (→), sitDownChair (→), and jump-
ingJack (→).

tions involve the movements with just an arm, such as
SwipeRight (), SwipeLeft (), Catch () and DrawCir-
cleCCW () are plotted close to each other. While the
actions which engage the movements of arms and legs,
for instance, Jog () and Walk () are drawn pretty
close, the action StandToSit () and Bowling () are
drawn afar from the other actions. The image on the
right shows twelve actions in the 3D space. Similar
to the left image, the actions which engage only the
movements of one arm such as Catch () , Knock ()
, SwipeLeft (), and Throw () are drawn very close
to each other. The actions which are sparsely dis-
tributed in the plot such as Bowling (), Jog () and
PickAndThrow () are the actions which have more free
movement in space. The SitToStand () and Stand-
ToSit () are located near each other.

Two images in Figure 6 show the distributions of
the same actions on two different subsets (the image
on the left vs. the right). Notice the actions which are
separated into two groups. This is because two of the
subjects “mm” and “dg” are positioned in perpendicular
direction to the opposing three subjects “bd”, “bk” and
“tr”. Figure 7 can explain why we have such behavior
in the plot. From a camera viewpoint, posing actions
to 0 and 90 degree creates different trajectories while
keeping the correlations of the joints of that movement.
The unthresholded RPs of jumpingJack and walking
can be found in Figure 8 on the left and our extracted
features are illustrated on the right. The feature repre-
sentation from our proposed algorithm show that the
repetition of the patterns still gives the same fixed con-
cise feature. Moreover, the proposed algorithm is ro-
bust against noise as displayed for action indexing 302,
while the unthresholded RPs shows its sensitivity to
this small noise.

bd 42 bk 69 dg 74 mm 90 tr 101 bd 216 bk 250 dg 252 tr 302

Figure 7: Nine trials of subjects “bd”,”bk”,“dg”, “mm” and “tr” in the HDM05 performing jumpingJack and walk

bd42 bk69 dg74 mm90 bd216 bk250 dg252 tr302 42

69

74

90

216

250

252

302

Figure 8: The unthresholded RPs of actions in Figure 7 versus our representations using six components.

5 Conclusion

We have presented an approach to represent a time
series as a small set of features. We adopted con-
ventional dimensionality reduction techniques such as
PCA and KernelPCA to capture the intrinsic proper-
ties of the signals. The robustness of our approach has
been proven by employing a traditional classifier with
these representations. The results were compared us-
ing original signals with two types of RNNs with hun-
dreds of configurations. The main benefit of our ap-
proach is that regardless of their lengths and the num-
ber of features, the time series can be represented in
a very concise manner. Furthermore, we can visualize
a large amount of time series data simultaneously in a
Cartesian coordinate system. An instance which has
a unique property would be laid afar from its group.
Although our approach has a few limitations, never-
theless its strength lies in the fact that it is very simple
to implement and lightweight because the transforma-
tion operation is just a matrix decomposition.

References

[1] Baydogan, M.G., Runger, G.: Time series representa-
tion and similarity based on local autopatterns. Data
Mining and Knowledge Discovery 30(2), 476–509 (2016)

[2] Chen, C., Jafari, R., Kehtarnavaz, N.: Utd-mhad: A
multimodal dataset for human action recognition uti-
lizing a depth camera and a wearable inertial sensor.
In: Proceedings of IEEE International Conference on
Image Processing. pp. 168–172 (2015)

[3] Du, Y., Wang, W., Wang, L.: Hierarchical recurrent
neural network for skeleton based action recognition.
In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (June 2015)

[4] Eckmann, J.P., Kamphorst, O.S., Ruelle, D.: Recur-
rence plots of dynamical systems. Europhysics Letters
4 (Nov 1987)

[5] Junejo, I.N., Dexter, E., Laptev, I., Perez, P.: View-
independent action recognition from temporal self-similarities.
IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 172–
185 (2011)

[6] Karim, F., Majumdar, S., Darabi, H., Harford, S.:
Multivariate lstm-fcns for time series classification (2018)

[7] Luczak, M.: Combining raw and normalized data in
multivariate time series classification with dynamic time
warping. Journal of Intelligent and Fuzzy Systems 34(1),
373–380 (2018). https://doi.org/10.3233/JIFS-171393

[8] Müller, M., Röder, T., Clausen, M., Eberhardt, B.,
Krüger, B., Weber, A.: Documentation mocap database
hdm05. Tech. Rep. CG-2007-2, Universität Bonn (2007)

[9] Schäfer, P., Leser, U.: Multivariate time series classifi-
cation withWEASEL+MUSE. CoRR abs/1711.11343
(2017), http://arxiv.org/abs/1711.11343

[10] Tanisaro, P., Heidemann, G.: Time series classifica-
tion using time warping invariant echo state networks.
In: 15th IEEE International Conference on Machine
Learning and Applications, (ICMLA) (2016)

[11] Tanisaro, P., Heidemann, G.: An empirical study on
bidirectional recurrent neural networks for human mo-
tion recognition. In: 25th International Symposium on
Temporal Representation and Reasoning (2018)

[12] Tanisaro, P., Lehman, C., Sütfeld, L., Pripa, G., Hei-
demann, G.: Classifying bio-inspired model in point-
light human motion using echo state network. In: The
26th International Conference on Artificial Neural Net-
works (ICANN), 2017 (2017)

[13] Tanisaro, P., Mahner, F., Heidemann, G.: Quasi view-
independent human motion recognition in subspaces.
In: Proceedings of 9th International Conference on
Machine Learning and Computing (ICMLC) (2017)

[14] Zhu, W., Lan, C., Xing, J., Zeng, W., Li, Y., Shen, L.,
Xie, X.: Co-occurrence feature learning for skeleton
based action recognition using regularized deep lstm
networks. In: Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence. pp. 3697–3703 (2016)

http://arxiv.org/abs/1711.11343

