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Abstract

In this paper, we present a food-specialized detec-
tion1 deep learning architecture with knowledge trans-
ferred from a pretrained food/non-food classification
model. Existing approaches in object detection all sep-
arate it from image classification due to their incom-
patible outputs, whereas our work bridges the gap be-
tween the two most fundamental computer vision top-
ics by making use of transferred features, and as such
we contend that our work provides a new perspective
in object detection. Experiments are conducted in two
parts. First, transfer learning quantification exper-
iments show that initializing a network with trans-
ferred features from classification task can surpris-
ingly produce a boost to generalization for the detec-
tion task. Second, experiments on three state-of-the-
art neural network backbones show that our approach
enables rapid progress and improved performance. The
results significantly surpass all original plain networks
with more than 10% precision improvement. In addi-
tion, our scheme can be easily generalized to any CNN-
based architecture.

1 Introduction

The adherence to dietary self-monitoring plays an
increasingly important role in public health [1]. For
convenience reasons, self food monitoring has been
progressively automated, and conducted using image-
based food detection. In fact, through projects such as
GoCarb [2], the automated food recognition is consid-
ered as a “holy grail” of nutrition tracking. Meanwhile,
due to the widespread use of imaging devices like digital
camera on smart phones, food detection has become a
practical technique that could be applied in real-time.

Deep Convolutional Neural Networks (DCNN) [3]
brought breakthroughs when applied to cognitive tasks
related to video, images, and texts [4]. Existing ob-
ject detection methods fall into two main categories [5].
First, two-stage detection framework which includes a
pre-processing step for region proposals, e.g. Fast R-
CNN[6]. It initially generates category-independent re-
gion proposal, and then category-specific classifiers are

1In our paper, we denote detection as the effect of both rec-
ognize and localize multi-food objects in an image; food classi-
fier as a binary classification for discriminating food or non-food
image.

used to determine the category labels of region pro-
posals. Second, one-stage detection framework, e.g.
YOLO9000[7], use fewer computation resources by di-
rectly predicting class probability and bounding box,
thereby avoiding region proposal generation.

Our work is motivated by the fact that, despite dra-
matically improved performance of the existing state-
of-the-art object detection approaches, food detection
has not achieved satisfactory results. The challenges
stem from two causes: the vast range of intraclass
variations, and the huge amount of categories. On
the other hand, thanks to CNN, category-based im-
age classification is much easier to handle; although,
all existing frameworks separate detection task from
image classification. Under this context, our work fo-
cuses on bridging the gap between classification and
detection techniques to tackle the food detection task.
We make use of the extracted feature information from
a trained food/non-food classifier, and then generalize
to our food detection network by transferring exhorted
features. Our experiment results show a significant im-
provement, and surpass all plain networks trained from
scratch. Moreover, our work is conceptually intuitive
and easy to transplant to any CNN backed architecture
for category-specialized detection tasks.

This paper contributes as follows. First, we pro-
pose a transfer-learning-aided approach to improve the
detection performance with shorter training time and
faster convergence, merging with one-stage framework
YOLOv2. Second, we demonstrate the wide applica-
bility by conducting experiments under three different
neural network backbones. Third, by experimentally
quantifying how well the features transfer from classi-
fication task to detection task, we instill confidence in
our scheme. To our best knowledge, our approach is
the first one-stage pipeline in food-specialized detection
with transferring features.

2 Related Work

Food Localization. The problem of food local-
ization has been typically addressed as a binary classi-
fication problem by training neural network model to
distinguish whether a given image contains food or not.
Image segmentation is also mentioned several times in
[8, 9], where authors extract segments using hierarchi-
cal segmentation, and then apply joint food recogni-
tion through multi-class SVM or DCNN. The main
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Figure 1: General scheme for our food detection proposal. The bottom part is the pretrained transfer learning
process for a binary food classifier, in which we remove last two depthwise convolution blocks to calculate activation
maps. The top part is our food detection network with parameters updating from the food classifier, merging with
YOLO output layer.

deficiency of these approaches is that they all require
additional information, such as environmental context,
restaurant data, where the picture was taken, or a pre-
built database. Our work aims to tackle food detection
problem with only image input, as the real-time image
analysis sometimes have no access to any convenient
information.

Bolanos et. al [10] proposed the first simultaneous
food localization and recognition approach with two
main steps: one is a food localization network built on
GoogleNet [11], which can generate bounding box pro-
posals by producing activation maps on the input im-
age and second, recognize the object inside each bound-
ing box by fine-tuning the GoogleNet used in the first
step. However, this approach is a two-stage pipeline
that requires much computation. This approach can be
efficiently improved by integrating with YOLO, which
is one of the state-of-the-art one-stage detection strate-
gies, to generalize bounding box and class label simul-
taneously, rather than separating food localization and
recognition into two steps.

Transfer Learning with Neural Networks.
Object detection is one of the fundamental problems of
computer vision. Although some productive and suc-
cessful solutions exist, they require a massive amount
of training data, tedious annotation and long training
process. Transfer learning is a deep learning technique
built upon previous feature information extracted from
other pre-trained neural network model, thereby reduc-
ing training requirements. Our proposed method ben-
efits the food detection task by transfer learning, lead-
ing to a superior learning capacity based on previous
experiences and knowledge.

Although there exist many image classification pa-
pers performing transfer learning [12, 13], research in
object detection, especially when it comes to food, is

rather limited. Rajpura et.al [14] presented a food de-
tection approach with transfer learning to detect pack-
aged food products in refrigerator scene by manually
generating synthetic images as the training set. How-
ever, their model can only find the approximate posi-
tion of food packages without category or confidence.
Further, the process of hand-crafting datasets is not
only tedious, but works only for a specific scenario.

3 Methodology

In this section, we describe the proposed methodol-
ogy in two steps: a) training a binary food classifier on
Food-5K, b) training a food detection model on UEC-
Food100 and UECFood256 with transferring features
followed by a YOLO output layer. The whole process
is illustrated in Fig. 1.

3.1 Food/Non-Food Classifier

Our food-specialized detection algorithm starts with
training a binary food classifier to discriminate whether
input images contain food. Then, we calculate Food
Activation Maps (FAM) [10] to highlight regions that
are most relevant to food. In other words, we pre-train
a binary classifier to sensitize our model to real food
regions, as shown by a FAM example in the lower part
of Fig. 1.

Food Activation Maps Generation. Once we
finish the training of the food classifier we calculate
FAM. In order to do that we remove the last two depth-
wise convolution blocks to get a 14x14 output for suf-
ficient spatial resolution, and then we connect with
a Google Average Pooling(GAP) layer [15] to calcu-
late FAM. Finally, we fine-tune our model on Food-5K
dataset again, such that it is suited for further transfer
learning.



By applying the output of GAP into the class score,
Sc, we obtain

Sc =
∑
x,y

∑
k

wc
kfk(x, y) =

∑
x,y

FAMc(x, y) (1)

where FAMc(x, y) indicates the importance of the ac-
tivation at spatial grid (x, y) containing a food item.
c ∈ {0, 1} represents binary categories, and wc

k is
the weight corresponding to the category for unit k.
fk(x, y) represent the activation of unit k in the last
convolutional layer at (x, y).

Despite the work [10] showing that it is feasible to
extract bounding boxes through heatmap segmenta-
tion, we do not rely on FAM to extract food objects
because this approach requires high resolution input
to clearly separate the food objects, as well as massive
amounts of fine-tuning on various datasets. Otherwise
the FAM could not tell the edges of different food ob-
jects, as illustrated in Fig. 2.

Figure 2: A disadvantage of using FAM to perform
localization. The input image resolution is (299, 299),
(399, 399), (499, 499) and (599, 599) from left to right.

At the end of this stage we acquire three food/non-
food classifiers corresponding to three backbone neural
networks with 95% average accuracy.

3.2 YOLO Output Layer

We now describe the final layer as illustrated in the
top right corner of Fig. 1. Our food detection network
has the same structure as the feature extraction net-
work. However, it is followed with two more depth-wise
convolution blocks [16]. This helps to downsize the res-
olution to (7, 7), dividing the image into a 7 × 7 grid.
Finally, a YOLO layer follows to reshape the output.
We use a k-means clustering algorithm to calculate 5
anchor boxes. Each grid cell predicts 5 bounding boxes
to locate the object. Each bounding box comprise of
5 elements: bx, by, bw, bh and a box confidence score,
which reflects the likelihood of a box containing an ob-
ject. Hence, the final output box after YOLO layer
has a shape of (S, S, #box, 5 + #class) = (7, 7, 5, 5 +
#class).

The confidence score is calculated by the following
equation:

CS = Pr(classi) · IoU truth
pred (2)

where Pr(classi) is the probability that the object be-
longs to classi. IoU truth

pred is the Intersection over Union

(IoU) ratio between the predicted box and the ground
truth.

3.3 Transfer Learning for Food Detection

The final step of our food detection network is to
fine-tune the food detection datasets (UECFood100[17]
and UECFood256[18]) with transferred features from
pre-trained food classifier.

In Fig. 1 we use MobileNet [19] as the example
feature extraction network to illustrate how to apply
our transfer learning scheme for food detection. Fur-
ther, we prove the efficiency and applicability of our
solution on three different neural networks in Sec.4.2.
MobileNet is built on depthwise separable convolution
blocks [16], which are factorized forms that express a
standard convolution by a depthwise convolution and a
1x1 pointwise convolution. By this two-step process of
filtering and combining we get a significant parameter
reduction [19].

In the next section we present a number of experi-
ments to quantify the transfer learning effect.

4 Experiments

We use three datasets to build and evaluate the
proposed approach: Food-5K [20] which contains 50%
food images and 50% non-food images for training
food/non-food classifier, UECFood100 [17] and UEC-
Food256 [18] with 100 and 256 kinds of Japanese food
with 40K images in total. We design transfer learning
quantification experiments in Sec. 4.1 and ablation ex-
periments in Sec. 4.2 on three state-of-the-art neural
networks. Finally, we analyze the effect of transferring
features and the performance of our transfer-learning-
aided (TLA) food detection technique in comparison
with corresponding plain neural networks trained from
scratch.

4.1 Transfer Learning Quantification

Yosinski et. al [21] proposed a experimental method
to quantify the generality versus specificity of neurons
in different layers. We assume that our base model
(food/non-food classifier) contains general information
for food detection, so features in all CNN layers of
the food classifier are being transferred. To prove our
premise, we design similar experiments but instead of
splitting the same dataset into two parts for task A
and task B for the same type of task, we consider
food/non-food classification as task A and food detec-
tion as task B, training on entirely different datasets,
as shown in the top two rows of Fig. 3(b). These net-
works, which we call baseA and baseB, are modified
accordingly on the last several layers to generate dis-
tinct outputs for different tasks.

We demonstrate how well features from all convo-
lution blocks transfer from base task to another one
by defining and training the following two networks, as
illustrated in the bottom row of Fig.3(b):



(a) (b)

Figure 3: (a)Results of transfer learning quantification experiments. (b)Overview of the transfer learning quantifi-
cation experimental treatments and controls. The labeled rectangles (e.g WB1) represent the weight vector learned
for that layer, with the color indicating which dataset and task the layer was originally trained on.

• A transfer network A11B: the first 11 depthwise
convolution blocks are copied from baseA and
frozen. The remaining higher layers are initial-
ized randomly, except last several Conv2D layers’
weights, which are initialized based on the weight
shape and normalized by the grid size of YOLO
output layer. They are trained for the dataset B.

• A transfer network A11B+: just like A11B but lay-
ers are not frozen but trainable.

The results of all A/B transfer learning experiments
on dataset Food-5K (task A) and UECFood100 (task
B) are shown in Fig. 3(a). The red stars are the results
of baseB, indicating a network trained from scratch for
food detection task with 49.4% average mAP from 0.5
IoU to 0.9 IoU. In both A11B and A11B+ experiments,
we compare their performance with the Baseline.

The blue A11B diamonds show the transferability of
features from one network of the base binary classifi-
cation task to food detection task, with 61.25% aver-
age mAP. There is a significant drop at IoU 0.5 and
0.6 from BaseB to A11B meaning that the weights we
copied containing specific features for task A but also
general features for both task A and B, thus freezing
those features will hurt the performance.

The green A11B+ triangles show that transferring
features from food/non-food classifier benefit the per-
formance of food detection task. Moreover, this result
suggests that transferring features will boost general-
ization performance even if the target task is complex
and with 3 times bigger dataset. In addition, this re-
sult is not attributed to longer training time. In fact,
we trained all networks with same iterations (12K base
iterations vs. 12K iterations for A11B vs. 12K itera-
tions for A11B+). The average boost from 0.5 IoU to
0.9 IoU is 11.8% between Transfer and Baseline.

4.2 Ablation Experiments

To find out the effects of transferring features, we
ablated (removed) the transferring features from our
food detection model, and then trained with three dif-
ferent neural network backbones to prove applicability
and general efficiency. Results are shown in Fig. 4 and
discussed in detail text.

Architecture. We generalize our approach to three
state-of-the-art CNN-based architectures: MobileNet,
MobileNetV2 and ResNet18. We use the same input
resolution(224x224) for all these networks.

Transfer Learning vs. From scratch. Our
food detection approach benefits from pre-training a
food/non-food classifier. In Fig. 4 top row, we com-
pare the training loss between our TLA models with
the model trained from scratch. We found that the
performance of all plain backbones have been improved
after combining with transferring features. They have
a much better initial performance with lower loss. For
MobileNet and MobileNetV2, the starting loss is 9
times less and 5 times less respectively, compared with
the same backbone model without transferring fea-
tures. Further, the same performance is achieved after
only half of the number of epochs (red points have the
same loss values as black points, but save 50% training
time), and the overall loss ends up with nearly zero.
Even though we do not spot a significant difference
for the training process of ResNet18, its food detec-
tion precision has been greatly improved as shown in
Table.1.

Analysis of mAP vs. IoU. Next we compute the
mean Average Precision (mAP) of predicted bounding
boxes at different IoU ratios with ground truth boxes.
Fig. 4 second row shows the mAP results among three
backbones with transferring features in comparison
with plain networks. The plots indicates a great im-



Table 1: UECFood100 and UECFood256 detection mean average precision result (%) under three backbone
neural networks with or without transferred features. IoU = 0.5.

Dataset MobileNet TLA-MobileNet MobileNetV2 TLA-MobileNetV2 ResNet18 TLA-ResNet18

UECFood100 68.25 76.37 59.51 78.29 53.19 61.66

UECFood256 69.76 75.01 73.42 76.01 40.92 54.77

provement of the TLA models (red lines): our scheme
under all three backbones significantly surpasses cor-
responding plain models with IoU ratios from 0.5 to
1.0. More specifically, there is 11% mAP improvement
for MobileNet, 18% increase for MobileNetV2 and 8%
boost for ResNet18. It achieves nearly 80% mAP un-
der MobileNet and MobileNetV2. The results show
that initializing with transferring features can improve
generalization performance even after substantial fine-
tuning of a new task, which could be a useful technique
for improving object detection performance.

4.3 Food Detection Performance

To quantify food detection performance, we choose
the most commonly used metric in multi-class ob-
ject detection problem, mean average precision, to
evaluate our algorithm in the testing set. A posi-
tive detection has IoU > 0.5 with the ground-truth,
obj threshold=0.3 to distinguish between non-object
and object. Further, nms threshold=0.3 to deter-
mine whether two detections are overlapped and dupli-
cated. To evaluate the results of localization accuracy
as well recognition precision, we applied a mean aver-
age over all classes. Our proposed transfer-learning-
aided architecture is capable of finding most of the
food-related objects in both UECFood100 and UEC-
Food256 datasets with the fewest possible bounding
boxes.

Finally, in Fig. 5 we show some examples of the
complete method. Table. 1 shows the mAP results
with IoU = 0.5 with validation on more than 10K food
images of various kinds of food.

5 Conclusions and Future Work
We proposed a high precision, transfer learning

based, deep learning scheme for food detection task.
Our approach is applicable to any CNN-based neural
networks. The experiments show that that even small
networks achieve surprising performance. We have also
experimentally quantified how transferability benefits
object detection task from image classification. We
found that initializing with transferred features can
greatly improve generalization performance. Our work
is an intuitive combination of image classification and
object detection.

In research to follow, we plan to integrate this tech-
nique into a comprehensive food tracking solutions
that can execute solely on mobile computing devices.
Further, the proposed technique has the potential to
become useful for improving object detection perfor-
mance under more general context.
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Figure 4: Loss history and evaluation result of ablation experiments on three neural networks. First row: Loss
history during training with same number of iterations on MobileNet, MobileNetV2, ResNet18. Bottom row: mAP
results for TLA models and original models at different IoU.

Figure 5: Results of our transfer-learning-aided (TLA) approach on UECFood100 and UECFood256 datasets. The
results are based on MobileNetV2, achieving mAP of 78.29%. Bounding box, category and confidence are shown
in colors. It is recommended to view this figure in color on-line, to zoom in to observe numbers and labels.


