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Abstract

This paper proposes a framework for automatically
annotating the keypoints of a human body in images
for learning 2D pose estimation models. While con-
siderable contributions in the community provide us
a huge number of pose-annotated images, all of them
mainly focus on people wearing common clothes, which
are relatively easy to annotate the body keypoints. This
paper, on the other hand, focuses on annotating peo-
ple wearing loose-fitting clothes that occlude many body
keypoints. In order to automatically and correctly an-
notate these people, we divert the 3D coordinates of the
keypoints observed without loose-fitting clothes, which
can be captured by a motion capture system (MoCap).
These 3D keypoints are projected to an image where
the body pose under loose-fitting clothes is similar to
the one captured by the MoCap. Pose similarity be-
tween bodies with and without loose-fitting clothes is
evaluated with 3D geometric configurations of MoCap
markers that are visible even with loose-fitting clothes.
Experimental results validate the effectiveness of our
proposed framework for human pose estimation.

1 Introduction

Human pose estimation allows us to achieve a num-
ber of real-world applications such as image/video re-
trieval. While recent improvement of deep neural net-
works enables accurate pose estimation [2, 9], they re-
quire a huge amount of supervised training data. The
supervised data for human pose estimation is a set of
images annotated with the keypoints of a human body
(e.g., shoulders, wrists, knees, and ankles). This anno-
tation is given manually to images (e.g., LSP [7] and
MPII Human Pose [1]), in general, for 2D pose estima-
tion where x–y image coordinates of each keypoint is
estimated. Otherwise, incorrectly-annotated data are
unavoidable in the automatic annotation (e.g., BBC
Pose [3]) using pose estimation methods. For 3D pose
estimation, the 3D coordinates of each keypoint can be
measured by a Motion Capture system (MoCap) (e.g.,
HumanEva [13] and Human3.6M [6]), while it is diffi-
cult to use the MoCap in the wild.

However, it is difficult for the aforementioned man-
ual and MoCap-based annotations to correctly localize
the keypoints occluded by loose-fitting clothes. In this
paper, we explore how to annotate such occluded key-

Pose estimated without
additional annotations

Pose estimated with anno-
tations on loose clothes

Figure 1. Effects of additional pose annota-
tions on loose-fitting clothes. The pose estima-
tion model obtained by our proposed annotation
method correctly modifies erroneous poses.

points for improving the pose estimation performance,
as shown in Figure 1. 3D keypoints can be captured by
using the MoCap system in a standard manner where a
person wearing tight-fitting clothes. Assume that simi-
lar body poses are observed both with tight-fitting and
with loose-fitting clothes. Under this assumption, we
project the keypoints captured with the tight-fitting
clothes to images with the loose-fitting clothes.

Technical problems for the aforementioned annota-
tion framework and our solutions are as follows:

Pose matching: We must match similar poses ob-
served with tight-fitting and loose-fitting clothes.
Since this matching is difficult in images, as shown
in “Image sequences” in Figure 2, we employ the
3D coordinates of MoCap markers attached to vis-
ible endpoints (e.g., ankles) even with loose-fitting
clothes. If the endpoints are localized in the same
configuration in two different body poses, these
poses may be similar to each other, as assumed in
Inverse Kinematics.

Similar configurations of markers: Even if similar
poses are captured both with tight-fitting and
loose-fitting clothes, these poses might be observed
in different locations and orientations. Therefore,
the geometric configurations of the markers are
matched after they are spatially aligned.

2 Related Work

The recent improvement of convolutional neural net-
works enables accurate pose estimation even in RGB
images [2, 9]. All of these pose estimation methods
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Figure 2. Pipeline of the proposed framework. In (1) data capture step, image sequences are captured in
synchronization with the MoCap system. The MoCap system cannot measure the 3D keypoints of a human
body in sequences with loose-fitting clothes, as shown by “Not available” in the figure. The MoCap system
outputs visible markers as well as the 3D keypoints. (2) Pose matching with alignment finds that, for each
frame in sequences with loose-fitting clothes (denoted by f -th frame), gf -th frame in sequences with tight-
fitting clothes is the most similar one in terms of the 3D configuration of the visible markers. Finally, the 3D
keypoints in gf -th frame are projected to f -th frame in (3) keypoint projection step.

require huge training datasets (e.g., [1, 10]). Since er-
roneous pose annotations lead to failure in pose esti-
mation, the annotations should be as correct as pos-
sible. While erroneous pose annotations can be modi-
fied during learning [8] in a similar manner to weakly-
supervised learning, such approaches are insufficient for
correct annotations. While human images annotated
with correct keypoints can be synthesized by CG [11],
it is known that the performance is limited if only such
synthesized data is trained. Therefore, this paper pro-
poses pose annotations on real images.

Pose annotation is difficult in particular for peo-
ple wearing loose-fitting clothes. Pose annotation of
such people in real images (not in CGs) is addressed
explicitly by few previous methods. In [17], human
body parts including loose-fitting clothes are automat-
ically segmented based on colors painted on the clothes,
which are difficult to be prepared. The keypoints un-
der loose-fitting clothes are measured by a MoCap sys-
tem using 3D gyroscopes, accelerometers, and magne-
tometers in [15]. However, the sensor drift error is un-
avoidable, and the magnetometers are also disturbed
by metals around a subject.

3 Automatic Human Pose Annotation for
Supervised Learning

Figure 2 shows the pipeline of our framework.

(1) Data capture (Section 3.1): For our proposed
approach, similar poses must be included in train-
ing data with tight-fitting and loose-fitting clothes.
This assumption is easily guaranteed so that a sub-
ject is requested to behave as same as possible in
these two different settings when training data are
captured As well as MoCap sequences including
3D keypoint and visible marker sequences, image
sequences are captured simultaneously.

(2) Pose matching with alignment (Section
3.2): The 3D pose similar to the one observed
with loose-fitting clothes is found from 3D poses
with tight-fitting clothes captured by the MoCap
system. This matching is achieved with the 3D
coordinates of visible optical markers. We use
the markers on the head, wrists, and ankles in
our experiments under the assumption that these
markers are visible in many frames. In order to
match two 3D poses in different positions and
orientations, these poses are spatially aligned.

(3) Keypoint projection (Section 3.3): Given the
nearest neighbor 3D pose found from data with
tight-fitting clothes. All keypoints at this frame
are projected onto an image synchronized with the
markers that are matched with this nearest neigh-
bor pose. These projected keypoints are regarded
as keypoint annotations on this images.



3.1 Data Capture for Tight-fitting and Loose-
fitting Clothes

In our data capture step, image and MoCap se-
quences are captured. While any cameras can be used
for image capturing, we assume that the MoCap se-
quences are captured by an optical MoCap system.

A subject is requested to perform the same mo-
tions with tight-fitting and loose-fitting clothes. While
the 3D coordinates of body keypoints are measured in
the setting with tight-fitting clothes, the keypoints are
not available in that with loose-fitting clothes. How-
ever, for pose matching described in Section 3.2, opti-
cal markers are attached to the body also in the setting
with loose-fitting clothes. In our experiments, the sub-
ject wears the loose-fitting clothes over the tight-fitting
clothes with the markers.

If possible, it is better to fully synchronize cameras
and a Mocap system. However, for automatic human
pose annotation, body keypoints captured with tight-
fitting clothes are projected onto images with loose-
fitting clothes, as described in Section 3.3. Since it
is impossible to synchronize between the sequences of
different observations, subtle time shifts between the
image and the keypoints projected onto the image are
unavoidable. It is also essentially impossible for the
subject to repeat the completely same motions in the
different observations. Therefore, hardware synchro-
nization between the cameras and the MoCap system
is not necessarily required.

3.2 Pose Matching with Spatial Alignment

We have image and MoCap sequences with tight-
fitting and loose-fitting clothes. For each image ob-
served with loose-fitting clothes, a 3D body pose cap-
tured in this image is matched with any 3D body pose
captured with tight-fitting clothes.

Let Nm be the number of visible markers both

in tight-fitting and loose-fitting clothes, and M
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In different observations, the location and orienta-

tion of the subject in the MoCap coordinate system
may be changed. In order to spatially align two 3D
body poses, the relative translation and rotation, de-
noted by tf,g and Rf,g respectively, between f -th and
g-th frames is computed based on the minimum mean
square error as follows:

M
(l)
f =

[
Rf,g tf,g
0T 1

]
M (t)

g (1)

Q =

[
Rf,g tf,g
0T 1

]
= M

(l)
f M (t)+

g (2)

M
(l)
f =

[
M

(l)
f,1 · · ·M

(l)
f,Nm

]
M (t)

g =
[
M

(t)
g,1 · · ·M

(t)
g,Nm

]
Equation (2) is computed for each pair of M

(l)
f and

M (t)
g . With M (t)′

g = QM (t)
g , dissimilarity between the

spatially-aligned body poses is defined by the Mean
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If M
(l)
f and M (t)

g come from different body poses,
tf,g and Rf,g are meaningless and the dissimilarity
score, Ef,g in (3), becomes larger. With this dissim-
ilarity score, pose matching with spatial alignment is
achieved as follows:

gf = arg min
g

Ef,g (4)

where gf denotes the frame in the tight-fitting clothes
sequence that is most similar to f -th frame of the loose-
fitting clothes sequence.

3.3 Keypoint Projection

All keypoints in gf -th frame are measured by the
MoCap system. These keypoints are projected onto
f -th frame of the loose-fitting clothes sequence. A
perspective projection matrix from the MoCap coor-
dinate system to the 2D image coordinate system is
computed with point correspondences between the 3D
coordinates of MoCap markers and their 2D image co-
ordinates [5]. The projected keypoints are utilized as
human pose annotations for training human pose esti-
mation models.

4 Experimental Results

Our proposed method is evaluated with the perfor-
mance on human pose estimation using with and with-
out automatically-annotated keypoints in sequences
with loose-fitting clothes.

Data Capture For capturing various kinds of free
motions, all data was captured in a wide studio (10m
width × 7m depth × 2.5m height). We used a Mo-
Cap system consisting of 24 VICON T160 cameras (16
Megapixels). The resolution of RGB image sequences
is 1920 × 1080 pixels.



Table 1. The distance (pixels) between the automatically-annotated keypoint and its ground-truth (denoted
by dw) is computed, and its mean over all keypoints and all frames is shown. For validating the effect of
the spatial alignment, defined by Q in (2), for pose matching, the distance in case of no spatial alignment
(denoted by do) is also shown. The bottom row, “error reduction rate”, is computed to be dw

do
× 100.

head shoulders elbows wrists hips knees ankles total
without spatial alignment 26.7 24.3 32.0 22.9 30.9 26.1 24.0 26.7
with spatial alignment 19.6 15.5 21.8 14.5 26.6 21.3 18.3 19.6
error reduction rate 27% 36% 32% 37% 14% 18% 24% 27%

Tight Loose Tight Loose

Tight Loose Tight Loose

Figure 3. Pose-matched frames. Each pair shows
the best matching results obtained by the pro-
posed pose matching method.

Sample images with tight- and loose-fitting clothes
are shown in Figure 3, which are called tight- and loose-
fitting datasets, respectively. In addition to these two
datasets, we also prepared the Samurai film dataset,
which was extracted from a real film.

Tight-fitting dataset: 3463 frames for training.

Loose-fitting dataset: 3744 and 1300 frames for
training and test, respectively. The training
frames come from sequences that are different from
those used for the test frames in order to validate
ability in model generalization.

Samurai film dataset: 174 frames for test.

During our data capture step, one subject who per-
formed a huge variety of motions was observed. This
dataset has the following challenging properties:

Variety: A huge variety of motions lead to large differ-
ences between training and test data, which result
in difficulty in pose estimation.

Complexity: The subject imitated the complex mo-
tions of Samurai film actors in order to evaluate
our proposed method on real films as well as on
our loose-fitting test dataset.

Asynchronicity: It is impossible for the subject
to completely spatially-align and temporally-
synchronize the motions in different observations,
in particular when the subject moves quickly, as
shown in the upper-right example in Figure 3.

With our proposed method, all training images were
automatically pose-annotated. Only for evaluation, all
images including training and test images were manu-
ally annotated. The manual annotations in the train-
ing and test images are used for evaluating the effect
of our spatial alignment scheme and for evaluating the
performance on pose estimation, respectively.

Pose Matching with Spatial Alignment and
Keypoint Projection For each frame with loose-
fitting clothes, its best match frame with tight-fitting
clothes is found. For this pose matching, 23 markers
were used in total; five, eight, and ten optical markers
are attached to the visible regions of the head, wrists,
and ankles, respectively, in the MoCap system. Figure
3 shows several examples of this pose matching.

Based on this pose matching, a set of 3D keypoints
captured with tight-fitting clothes in each frame was
projected to its corresponding frame with loose-fitting
clothes. The projected keypoints are also shown in
Figure 3. The mean distance between the projected
keypoints and their corresponding ground-truth posi-
tions is shown in Table 1. For comparison, the mean
distance obtained without our spatial alignment is also
shown. Table 1 validates the effectiveness of the spatial
alignment; 26.7 pixel error without spatial alignment vs
19.6 pixel error with spatial alignment in total.

Pose Estimation Pose estimation methods pro-
posed in [2] and [20] are used for evaluation. Their pose
estimation models were pretrained with the COCO
dataset [10] and the VGG-19 model. The pretrained
models were given by the authors of [2] and [20]. For
our experiments, these models were finetuned by our
training images with loose-fitting clothes. The param-
eters used in this finetuning are as follows:

[2]: SGD with learning rate = 4.0e−5, momentum =
0.9, and weight decay = 5.0e−4.

[20]: Adam with learning rate = 1.0e−3, momentum
= 0.9, and weight decay = 1.0e−4.



Table 2. PCKh-0.5 evaluation [1] on our loose-fitting dataset. The best score obtained on each dataset in
each column is colored by red.

head shoulders elbows wrists hips knees ankles total

Baseline [2] (without finetune) 100 99.0 67.2 48.5 96.3 87.3 85.9 82.2
Proposed method (with finetune) 100 99.5 93.2 85.0 99.3 96.9 98.0 95.5

Baseline [20] (without finetune) 93.5 97.8 83.7 69.4 93.5 84.7 95.1 87.8
Proposed method (with finetune) 100 98.8 92.6 91.1 98.5 96.7 97.0 96.1

Table 3. PCKh-0.5 evaluation [1] on the Samurai film dataset. The best score obtained on each dataset in
each column is colored by red.

head shoulders elbows wrists hips knees ankles total

Baseline [2] (without finetune) 64.9 50.9 12.9 9.5 25.9 7.5 1.7 21.7
Proposed method (with finetune) 68.4 63.8 42.8 29.0 47.7 27.6 13.8 39.8

Baseline [20] (without finetune) 48.3 81.0 34.5 37.4 62.1 56.6 42.2 52.0
Proposed method (with finetune) 83.9 78.7 48.6 50.3 68.4 48.6 38.2 57.6

Figure 4 shows the visualized results of the fine-
tuned pose estimation model using [2] on the loose-
fitting dataset. For comparison, The results of the
baseline (i.e., the pretrained model using [2]) are also
shown. The quantitative results evaluated by PCKh-
0.5 [1] are shown in Table 2 1. The PCKh curves with
[2] are also shown in Figure 5. It can be seen that our
proposed model outperforms the original model in all
PCKh thresholds.

In order to validate the generalized performance of
the pose estimation model finetuned with our loose-
fitting dataset, we applied these models to real Samurai
film sequences (Figure 6). Table 3, Figure 6, and Figure
7 show the results of PCKh-0.5 evaluation, visualized
pose estimation results, and PCKh curves, respectively.
Although (1) pose estimation on this dataset is tough
due to severe occlusion with long sleeves and hem and
(2) probably finetuning using our loose-fitting dataset
is not generalized for other clothes and motions suffi-
ciently, it can be seen that our proposed model is, in
total, improved compared with the original model in
both of the quantitative and qualitative results.

5 Concluding Remarks

This paper proposed a framework for automatic pose
annotation of people wearing loose-fitting clothes. In
order to annotate the body keypoints under the loose-
fitting clothes in images, we project the 3D coordinates
of the keypoints without loose-fitting clothes captured
by a MoCap system.

Future work includes using temporal cues for pose
matching because the proposed method achieves only
framewise matching. The effectiveness of the temporal
cues is validated (e.g., using latent models [19, 15, 16,

1In our experiments, the head consists of “neck”. While
“neck” is not annotated in the COCO dataset, the mean of two
shoulders is regarded as its position in accordance with [2].

12] and using deep networks [21, 4]) and is expected to
be useful in our proposed method also. While the pro-
posed method just projects the best matched pose to
an image, the projected pose can be further validated
by keypoint connectivity in the appearance domain
[14, 2]. In order to learn more data for modeling var-
ious appearances of loose-fitting clothes, semi/weakly-
supervised learning is also important for [18].

This work was supported by the incubation program
of Kyoto University.
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