
Single-wavelength and multi-parallel dotted- and solid-lines
for dense and robust active 3D reconstruction

Genki Nagamatsu
Kyushu University
Fukuoka, Japan

Ryo Furukawa
Hiroshima City University

Hiroshima, Japan

Ryusuke Sagawa
AIST

Tsukuba, Japan

Hiroshi Kawasaki
Kyushu University
Fukuoka, Japan

Abstract

A dense one-shot scanning technique that is robust
to subsurface scattering is proposed. In this technique,
a novel pattern, consisting of multiple parallel dotted
lines and solid lines, that are aligned alternately, is pro-
posed. To project such a pattern efficiently, a single-
wavelength laser-based pattern projector is developed.
To detect patterns robustly from captured images, a
black and white camera attached with a narrow-band-
path filter is used in conjunction with our novel deep
learning based algorithm, which is based on a convo-
lutional neural network (CNN). Because the detected
lines must be identified for shape reconstruction, we ap-
ply a gap-coding technique, which is originally based on
a grid-line pattern, to the dot pattern. To this end, we
introduce a virtual grid-line structure, which is gener-
ated from the dot pattern. Additionally, we propose a
calibration algorithm specialized for our system, where
the pattern is static and shared with the shape recon-
struction algorithm, i.e., correspondence problem re-
mains. For a solution, gap-coding is further applied to
find correspondences under epipolar constraints. The
experimental results of scanning real objects are pre-
sented to demonstrate the effectiveness of our calibra-
tion and reconstruction techniques.

1 Introduction

Many approach are available for reconstructing
three-dimensional (3D) shapes of object. Among them,
structured light methods have been used for practical
applications because of their simplicity, stability, and
high precision. Recently, spatial encoding techniques,
requiring only single images, have attracted consid-
erable attention. One limitation of spatial encoding
methods is if positional information is encoded into a
small region, patterns tend to be complicated and are
degraded easily by environmental conditions, such as
noise, specularity, and blur. To avoid such limitations,
techniques based on geometric constraints rather than
local decoding have been proposed [1]. However, be-
cause these techniques are based on detected patterns,
their results are affected by the degradation of pat-
tern detection. Recently, grid patterns robust to se-
vere degradation, such as subsurface scattering, have
been proposed [2], where local information is embed-
ded into gaps between lines. However, because it re-

quires line detection for decoding, accuracy decrease
if the lines are scattered. To solve such problems, we
propose a one-shot scanning method that employs dot
and line patterns, instead of using a grid pattern. To
efficiently detect dots and lines from captured images,
a learning-based algorithm, specifically convolutional
neural network (CNN), is proposed. To apply CNN to
one-shot scanning, we construct two types of CNNs,
one for line and dot detections and the other for code
detection. Both outputs of CNNs from a single cap-
tured image are integrated to generate a virtual grid-
graph with gap information between lines. By using
the grid-graph, each line is identified using gap infor-
mation and 3D shapes are reconstructed using a light
sectioning method. Additionally, we propose a cali-
bration method for our system, where the remainder
of the correspondence problem is solved effectively by
adding one another CNN for detecting contour of the
calibration object, which is a sphere in our method.
The contributions of our approach are as follows. (1)
A dot-line pattern that is robust to severe subsurface
scattering is proposed. (2) A CNN-based technique for
detecting and decoding dot-line patterns is proposed.
(3) An automatic calibration technique for the system
is proposed.

2 Related Works

For three dimensional (3D) reconstruction, struc-
tured light is one of the most practical techniques.
There are two major approaches to encoding positional
information into patterns in structured light systems,
such as temporal and spatial encoding. Given that
temporal encoding requires multiple images, it is un-
suitable for capturing moving objects [3]. Spatial en-
coding requires only a single image and it can capture
fast-moving objects. Recently several commercial sys-
tems based on this approach have been made avail-
able [4]. One practical issue with one-shot scanning
is because the codes depend directly on spatial pat-
tern distribution, reconstruction accuracy is affected
severely by degradation of the captured pattern. To
avoid this limitation, techniques based on geomet-
ric constraints rather than decoding have been pro-
posed [1, 5]. However, because such techniques depend
on pattern detection, the results are affected by pat-
tern quality. Recently, solutions for typical degrada-
tion, caused by subsurface scattering, have been pro-
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Figure 1. (Left) Scanning system, (top right) pro-
jection of patterns onto target object, (bottom
right) and embedded code words.

posed [2, 6]. However, because these techniques still
requires the intersection of lines for decoding, pattern
resolution decreases to maintain robust detection of in-
tersections in the captured images. In the present pa-
per, we propose a new pattern that is robust to such
degradation in conjunction with a CNN based algo-
rithm, which is used widely in computer vision appli-
cations. As the CNN, U-Net [7], a FCNN architecture
for generating a pixel-wise labeled image, is modified
to fit our purpose.

3 Overview

3.1 System setup

As Fig. 1 shows, the proposed 3D measurement sys-
tem consists of a camera and a DOE projector. The
camera and the projector are set in almost parallel to
each other and are assumed to be calibrated. The pro-
jector pattern is fixed and does not change; therefore,
no synchronization is required. The geometric pattern
is projected from the projector onto the objects, and
the result is captured by the camera. In our system,
to achieve convenient scanning without using PC sys-
tems, all processes from image capture to 3D shape
reconstruction are performed using a JetsonTx2 [8].

3.2 Dot-line pattern

Under large variations of texture, strong subsurface
scattering, and inter-reflection or specularity, it is diffi-
cult to extract a few typical types of information about
the structured light, such as color or high-frequency in-
formation, and sometimes, such pieces of information
are lost completely. To avoid loss of important de-
tailed information, we adopted a pattern with a single
color and independent structure, i.e., sparse dots and
straight lines with uniform intervals. Usually, with
sparse dots, it is difficult to encode information us-
ing a wide baseline stereo setup with a large encod-
ing window, because the pattern is distorted heavily
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Figure 2. Geometric relationship among dot, de-
tecting gap code, code class indexes (numbers in
gap square) (Left), and virtual grid (Right).

under such conditions. To alleviate the problem, Fu-
rukawa et al. proposed a technique using only lines,
where information is embedded as ”Gap” of line seg-
ments [2]. One remaining problem is it requires the in-
tersection of two lines, which is easily blurred our and
degraded by subsurface scattering effects. In the pro-
posed technique, we take an intermediate solution, such
as a pattern consisting of both dots and lines with gap
information. The key point is horizontal line segments
are substituted by dots, even though they are not con-
nected directly. Fig. 1 shows that the actual dot-line
pattern consisting of dots and line segments.In the pat-
tern, dots are configured to create sparsely dotted lines
and are located between the solid lines. To each pair of
dots aligned horizontally and adjacently across a solid
line, codes are assigned by modulating the positions of
the dots in the vertical direction. As Fig. 2 shows, the
code classes are either S/L/LL/R/RR. The gaps are lo-
cated at the intersection of a vertical line and the line
connecting between dots. Moreover, the DOE projec-
tor has a limit in terms of the number of branches be-
cause noise is generated when the limit is exceeded. In
the proposed pattern comprising dots instead of lines,
a greater number of codes can be embedded compared
to that in the conventional gird pattern. Furthermore,
while lines cannot uniquely determine the position due
to distortion, codes and dots can be corresponded be-
cause dots can be located uniquely on the captured
image in the proposed pattern. Due to Increasing the
number of codes and corresponding dots, the proposed
pattern can be reconstructed more densely than the
conventional gird pattern.

3.3 Algorithm

The proposed method consists of two stages: a pat-
tern decoding stage and a 3D reconstruction stage as
shown in Fig. 3. In the pattern decoding stage, the cap-
tured image is first input into a CNN for vertical line
and dot detection. Simultaneously, the image is input
into a CNN for pixel-wise classification of local feature
codes embedded into the pattern. Then, by integrat-
ing the two results, a virtual grid-graph consisting of
virtual grid, is generated (Sec. 4.3).

After generating the virtual grid-graph, by using the
gird-graph as the input, 3D shapes are recovered in
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Figure 3. Overview of proposed algorithm: CNN-
based decoding and 3D reconstruction for one-
shot scan. Note that we must use two CNNs for
vertical line and dot detections, and another CNN
for code and coarse gap-position detections.

the 3D reconstruction stage. In the 3D reconstruction
stage, each line is identified using the voting method
and 3D shapes are recovered using a light sectioning
method (Sec. 4.4).

4 Robust pattern detection using CNN

In this paper, we use U-Nets [7] to extract pattern
structures and gap code information. The outputs of
U-Net reflect both fine and coarse features of input
images. By applying a U-Net to a captured image, N-
dimensional feature maps of the same size as the input
image can be obtained. In the resulting N-dimensional
feature maps, where each pixel is an N-D vector, max-
imum element for each N-D vector is extracted to con-
struct a N-labels classified image.

4.1 Detection of lines and dots

In the proposed method, lines and dots are detected
simultaneously by using the U-Net; we call it “Struc-
ture U-Net” hereinafter. In this study, we configure
a single network for detecting two primitives of lines
and dots of a given pattern. We choose this approach
because we expect that the kernel sizes required to de-
tect dots and lines are almost the same because both
are both the basic structural elements of the same pat-
tern. Notably, calculation time can be halved by using
a single network to detect two features.

The output data of the Structure U-Net consists of
five feature maps. Note that projected lines are ob-
served as curves on 3D scene; therefore curve detec-
tion is required. For detecting curve position, curves
are represented by the left-side and right-side labels of
curves, as proposed in [6]. Including the no-curve re-
gion, three maps are used for line detection. The other

two maps are used for detecting dots and non-dot re-
gions. Fig. 4(b) shows the output of Structure U-Net
with five labels.

The positions of the detected vertical line are calcu-
lated using the following method. First, a segmentation
image is created by setting IDs for the maximum val-
ues of the three output maps for each pixel. Then, we
calculate the horizontal sub-pixels of the vertical lines
as the intersection of the right and the left sides of the
lines by using the value of each region.

Similarly, a segmentation image of the dot regions
is created by taking the maximums of two of the fea-
ture maps from the output. Then, the positions of the
dots are calculated as the center of gravity of the dot
regions. Fig. 4(c) shows the result of dots detection.

4.2 Detection of gap codes

In the proposed method, gap codes are estimated
directly by applying U-Net to the image signal, as op-
posed to being estimated from the geometric relation-
ships between the results of line and dot detection. Be-
cause the direct method is not affected by the quality
of dot and line detection results, gap code detection
can be more stable than the geometric method, an im-
portant advantage of our method.

The architecture of U-Net for detecting gap-codes,
which we call “Code U-Net” hereinafter, is the same
as that of the Structure U-Net, except for the kernel
size of the convolution layers and the number of out-
put maps. To accelerate the calculation while reduc-
ing memory requirement, the size of the input image
is reduced to as appropriately by using bilinear inter-
polation. The output of Code U-Net consists of six
feature maps. After extending all feature maps to the
original input size, two segmentation images are gen-
erated as shown in Fig. 4(d) and (e). One is an image
with five labels, where each label corresponds to each
gap code, and the other is an image with six labels
including ”background” label with the aforementioned
five labels. The image with five labels is used to de-
cide gap-codes for each gap, whereas the image with six
labels is used to estimate the distance from the near-
est gap along the vertical line, which is used to refine
wrong detections. The detail will be explained later.

4.3 Virtual grid-graph generation

The decoded gap consists of two pieces of informa-
tion: position of the gap and feature code of the gap.
In the original gap-coding technique, gap positions are
given as the intersection of detected vertical and hor-
izontal lines. In the present work, we form a virtual
straight line by connecting the detected dots toward
the horizontal direction. Because the projector and
the camera are set up in the front parallel configura-
tion, we can detect the virtual line easily by scanning
pixels along the horizontal line. Then, gap positions
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Figure 4. (a) captured image, (b) line detection
results, where “line background” regions are col-
ored in blue, “line left side” in green, “line right
side” in red, “dot background” in black and “dot”
in white, (c) dot detection results, (d) code esti-
mation results with five labels, and (e) image with
six labels, where each colors denotes a code class,
same as Fig. 2 and the “background” label in case
of the image with six labels.

can be retrieved as intersection points between verti-
cal and virtual horizontal lines. Thereafter, the feature
codes of the obtained gaps can be retrieved by simply
referring to the pixel values at the positions of the gaps
of the segmented code image with five labels. A virtual
grid-graph is generated by connecting the gaps, where
the gaps have four connections: Up, Down, Left, and
Right. Because there may be missing gaps, if the abso-
lute distance along the vertical direction between gaps
is larger than the threshold value, an appropriate num-
ber of gaps is created between those gaps. Then, by
following the stored connections of the dots, the hori-
zontal connections (Left and Right connections) of the
gap are determined.

4.4 Line identification by voting

After generating the virtual grid-graph, 3D shapes
are recovered using the light sectioning method. To
apply the light sectioning method, each line should be
identified. In the proposed method, identification is
decided by the voting approach proposed in [2], where
information about connectivity in the detect graph and
epipolar constraints are used with a voting scheme to
increase robustness. In the proposed method, we ex-
tended the voting method by using a new similarity-
matching scheme as follows. By allocating the indexes
to each feature code as shown in Fig.2, the similarity-
matching score is calculated as the average of the abso-
lute difference in the indexes of the detect gaps in the
detect graph and those of the correct gaps in the pro-
jected pattern. If the matching score is smaller than
the threshold value, the matching gaps in the graph are
voted. The U-Net for detecting codes cannot label all
pixels perfectly, but, the code obtained by failure to de-
tect is close to the correct code. Also, If a corresponded
gap in a captured image is connected to dots, connected
dots can be obtained the correspondence. Thus, by us-
ing the matching score in the voting scheme, we can
efficiently obtain correspondence points. Once the cor-
respondence points are retrieved, 3D shapes can be re-
constructed using the light sectioning method.

5 Automatic calibration with sphere

Because we use the DOE projector, the projected
pattern is static, and thus, the projector’s intrinsic pa-
rameter and the relative positions and orientations be-
tween devices should be calibrated by using knowledge
about the pattern for 3D reconstruction. However, it
is difficult to use the pattern because we cannot use
the epipolar constraint for this case, meaning finding
correspondences becomes a 2D search and cannot be
solved by using pattern information alone.

As a solution, we use special markers on pattern and
a calibration tool with a known 3D shape, which is a
sphere herein. In the calibration process, positional in-
formation about the contour of the sphere is detected
by another CNN network to eliminate scaling ambigu-
ity. By using the gap-code with the virtual grid-graph
as well as special markers, calibration can be conducted
in a fully automatic manner. Note that, none of the
processes are manual, which is another strength of our
method.

5.1 Detection of sphere contour by U-Net

In the proposed method, we use U-Net for detecting
the contour of a sphere. The output data of this U-Net
consists of three feature maps, similar to the output
of Structure U-Net. The three labels represent regions
inside and outside the contour and other pixels. By
assigning the ID to the maximum of three values, a
segmentation image is generated, as shown in Fig. 5
(middle). We apply the subpixel estimation technique,
which is as same as the technique for line detection, to
acquire precise contour positions, as shown in Fig. 5
(right). This information is used efficiently to decide
the intrinsic parameter of the projector.

5.2 Acquisition of one-to-one correspondence

By using the positions and gap-codes of the virtual
grid-graph, the possible line IDs of each line are nar-
rowed. To eliminate the remaining ambiguity identify-
ing a correct ID for each line, additional information
is employed, for example, the zero-dimensional-light of
the DOE projector is assigned to the pattern as a spe-
cial marker and used. This special marker can be de-
tected easily by finding the maximum intensity of the
detected dots. Once the marker is found, the line ID
on the marker is decided. Then, the IDs are propa-
gated to adjacent lines to acquire all correspondences
of the virtual grid-graph. The sphere is moved within
the are where the special marker is projected, a few im-
ages are captured, and the above-described processing
is executed to obtain the corresponding point relation-
ship. Finally, bundle adjustment is applied to estimate
the calibration parameters.



Figure 5. Automatic calibration: (left) calibra-
tion image, (middle) detection of contours, and
(right) detected sphere region.

Table 1. Accuracies of scanned results (RMSEs
[mm]) obtained using a previous method [2] and
proposed method.

Table Mannequin Sponge Shoes
Previous [2] 1.9 4.2 3.7
Proposed 1.7 3.3 3.2

6 Experiment

6.1 Evaluation of shape reconstruction method

To confirm the effectiveness of the proposed method,
we first apply the conventional method [9], which is
strongly affected by the subsurface scattering as shown
in Fig. 6(a). Because previous method [9] uses local
geometric features, if detecting embedded features is
failed due to the disturbance, it is difficult to recon-
struct 3D shapes and only collapsed shapes are recov-
ered as shown in Fig. 6(b). We also applied our method
and another previous work [2] to scan the same object.
Because the method [2] also uses global geometric fea-
tures as ours, it is reported to be more resistant to
subsurface scattering than previous methods [9]. Re-
sult is shown in Fig. 6(c) and result of our method is
shown in Fig. 6(d). To make fair condition for the ex-
periment, both projection patterns contain the same
number of projection points, i.e.the same number of
branches of DOE projector. Since horizontal lines do
not contribute to shape reconstruction, our result be-
comes much denser than previous methods [9]; this is
our another strength of the method. Fig. 7 shows the
scanned results of other objects, such as mannequin
head and pair of shoes. We compared the results with
the ground truth 3D shapes obtained by graycode pro-
jection, and the RMSEs relative to the ground truth
shapes are given in Table 1. Table 1 indicates that our
technique is more accurate than [2]. In [2], because the
intersections of two lines are used as the corresponding
points, the ambiguity of line detection reduces accu-
racy.

6.2 Evaluation of calibration method

To validate the proposed calibration method, we re-
constructed the 3D shapes of a board and sphere by
using the parameters estimated with the proposed cal-
ibration method that uses a ball, and by using the pa-
rameters estimated with the calibration method that

(a) Sponge object (b) Previous method [9]

(c) Previous method [2] (d) Our method

Figure 6. Reconstruction result on strong subsur-
face scattering object with various methods.

Figure 7. Reconstruction results: (left column)
obtained using our dot-line technique, (right col-
umn) those obtained using the grid-gap tech-
nique [2]. We can confirm that our technique
yields considerably denser results than the pre-
vious technique using the same number of points
for projected pattern.

uses a cube shape with checker patterns. The accu-
racies are estimated by measuring RMSEs relative to
the ground truth shapes. The ground truth shapes are
measured by gray-code projection with calibration us-
ing the cube shape. Table 2 shows the results. The
RMSE values obtained using the proposed method are
approximately on par or comparable with those ob-
tained using calibration with the cube. This shows the
validity of the proposed calibration method.

6.3 Reconstruction results with DOE projector

We created an actual system using a DOE laser pro-
jector with infrared wavelength and a narrow band-
path filter. The reconstruction results are shown in
Fig. 8 and Fig. 9. The proposed method can recon-
struct objects with various materials including a ce-
ramic bottle, highly specular board and mannequin
made of soft vinyl.



Table 2. Shape accuracies (RMSEs [mm]) with
proposed calibration method and calibration us-
ing a cubic object with checker patterns.

Table Board Sphere Mannequin
Checker cube 0.60 1.2 1.8
Proposed 0.63 3.1 3.2

Captured image Dot detection Curve detection

Gap detection 3D shape 3D shape

Figure 8. Infrared DOE projector results: Top
row: Source image and dot and curve detection
results. Bottom row: gap detection and recon-
structed shape.

7 Conclusion

In this paper, we proposed a dense one-shot scan-
ning technique, that is robust to subsurface scattering,
as well as an original pattern consisting of lines and
dots. Moreover, we proposed a calibration method,
that was developed specifically our system. Two net-
works are constructed for dot and line detection and for
feature-code detection. By integrating these pieces of
detected information, a virtual grid-graph that consists
of virtual grids with gap codes is generated. Moreover,
we also constructed another network for detecting the
contour of a sphere for automatic calibration process.
Evaluations are conducted to show the effectiveness of
our proposed method both qualitatively and quantita-
tively. In the future, we plan to increase the calcula-
tion speed of the proposed algorithm by using multi
processing techniques.
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