
Domain Adaptation using a Gradient Reversal Layer
with Instance Weighting

Kosuke Osumi, Takayoshi Yamashita, Hironobu Fujiyoshi
Chubu University

1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
{osmksk05@mprg.cs,takayoshi@isc,fujiyoshi@isc}.chubu.ac.jp

Abstract

We propose a new method for domain adaptation
that uses a gradient reversal layer (GRL) with in-
stance weighting. Domain adaptation methods that use
GRL have the latent problem of learning data that do
not contribute to improving the accuracy with which
the target domain is recognized. The proposed method
weights each source domain sample. This enables us
to control the gradients of training samples that do not
contribute to improving accuracy. In an evaluation ex-
periment using computer graphics and real image data,
accuracy in recognizing the target domain improved by
5.3% compared with existing domain adaptation meth-
ods.

1 Introduction

Deep convolutional neural network (DCNN) [1] have
the potential to achieve high recognition accuracy by
using a larger amount of training data [2]. However,
collecting many training data increases costs because
those data require corresponding labels, which are an-
notated manually. A dataset generated by computer
graphics (CG) data can be a practical alternative to a
real image dataset. The CG data can reduce the costs
of collecting images and preparing annotated data as-
sociated with real images, so research that uses CG
data has been actively pursued in recent years [3, 4, 5].
However, when evaluating real images with models that
were trained with CG data, the recognition accuracy
decreases due to the difference in the domain distribu-
tions between real images and CG data.

This problem can be solved using domain adapta-
tion. Domain adaption improves the accuracy by us-
ing both a target domain, with an insufficient amount
of data for the domain to be recognized, and a source
domain, with a sufficient amount of data for a domain
that will not be recognized. Several methods for do-
main adaptation have been proposed [6, 7, 8]. Among
them, one major method is to use domain adversarial
neural network (DANN) [9], which introduce adversar-
ial learning with a negative gradient. A DANN aims to
obtain features that are domain invariant by reversing
a gradient calculated from a domain-classification er-
ror so that it is hard for a domain classifier to classify
samples as source or target domains. However, DANN

suffer from susceptibility to the influence of source do-
main samples that do not contribute to improving the
accuracy with which the target domain is recognized
(i.e. the recognition accuracy).

In this paper, we propose instance weighting, which
controls the gradients of training samples that do
not contribute to improving recognition accuracy by
weighting the source domain samples. Instance weight
is calculated using a pre-classifier trained with source
domain samples and a target classifier trained with
source and target domain samples. The calculated in-
stance weight is used to select useful source domain
samples. Consequently, the proposed method can im-
prove the recognition accuracy without training labels
of the target domain. Experimental results with two
patch-image datasets created from real images and CG
data demonstrate that the proposed method can im-
prove classification accuracy.

2 Domain adversarial neural network

DANN is a domain adaptation method that uses ad-
versarial learning. DANN is composed of a feature ex-
tractor, label predictor, and domain classifier, as shown
in Figure 1. DANN also introduces a gradient rever-
sal layer (GRL) between the feature extractor and do-
main classifier. In forward propagation, the GRL per-
forms as an identity-mapping function for the output
of the feature extractor. The output of the feature
extractor is input to the domain classifier. In back-
propagation processing, the GRL multiplies a gradi-
ent calculated from the domain-classification error by
a negative scaler, −λ, and propagates the negative gra-
dient to the feature extractor. Let x be an input vector,
I be an identity matrix, and Rλ be the GRL. The for-
ward propagation and the back-propagation are defined
as

Rλ(x) = x, (1)

dRλ

dx
= −λI. (2)

Here, in order to make the feature extractor ro-
bust for the domain shift, the influence of the neg-
ative gradient must be decreased with GRL at the

16th International Conference on Machine Vision Applications (MVA)
National Olympics Memorial Youth Center, Tokyo, Japan, May 27-31, 2019.

© 2019 MVA Organization

02-14



Figure 1. Network architecture of DANN.

early stage of learning. This is because the domain-
classification error is large due to insufficient learning,
which impedes the acquisition of the ability to predict
labels. The reason for this is that a domain classifier
at the early stage of learning outputs larger domain-
classification error, which disrupts the improvement
of label-prediction performance. This problem can be
solved by changing the value of λ from 0 to 1 on the ba-
sis of the number of network updates p and a coefficient
of λ determination γ. λ is calculated by

λ =
2

1 + e−γp
− 1. (3)

Meanwhile, because the label predictor learns with
only the labeled source domain samples, target domain
samples in mini-batch data are excluded from training
the label predictor. The loss function of DANN can be
formulated as follows:

E =
∑

i=1..N

Ly(Gy(Gf (xi; θf ); θy), yi)

+
∑

i=1..N

Ld(Gd(Rλ(Gf (xi; θf )); θd), di), (4)

where labeled and unlabeled input images xi are de-
noted as source and target data, respectively. Gf , Gy,
and Gd are the feature extractor, label predictor, and
domain classifier, respectively. Now, let parameters of
each classifier be θf，θy and θd. When labels for the
output of Gy and Gd are assumed to be yi and di, net-
work parameters are updated using the loss functions
Ly and Ld. λ is determined by the update counts, so
it is not affected by back propagation.

If we focus only on the label-prediction perfor-
mance, the parameters of the feature extractor and
label predictor are suitable only for the source do-
main. However, the recognition accuracy does not im-
prove. Therefore, it is necessary to train the network so
that the domain distribution between the source and

Figure 2. Network architecture of proposed
method.

target domains becomes domain invariant. Domain-
invariant features can be obtained by estimating θf ,
which maximizes domain-classification loss, and θd,
which minimizes domain-classification loss. In order
to enable both optimal label-prediction performance
and domain-invariant features, −λ, which adjusts the
gradient of the domain classifier, is used.

3 Proposed method

The DANN inputs source and target domain sam-
ples at the same time and performs domain classifi-
cation with the feature extractor and domain classi-
fier. When the domain classifier classifies domain, the
DANN also uses source domain samples that do not
contribute to improving the recognition accuracy. The
proposed method introduces instance weighting in the
DANN to efficiently learn source domain samples. Fig-
ure 2 shows the network architecture of the proposed
method. Our method uses a DANN that must be
trained and a pre-classifier network that estimates in-
stance weight.

3.1 Instance weighting

Instance weighting adjusts the influence that source
domain samples have on domain-classification error by
weighting to improve target-classification performance.
Instance weight is calculated from a pre-classifier net-
work trained with only source domain samples in ad-
vance and a DANN that must be trained to classify
target domain samples correctly. The pre-classifier net-
work consists of a feature extractor and label predictor.
Using the pre-classifier network, the class likelihood Pa

for each source domain sample is computed.
Next, we prepare a training network, i.e. a DANN.

The training network has a structure in which the GRL
and domain classifier are added to the pre-classifier net-
work. The training network calculates a class likeli-
hood Pt for the source domain samples. Pt is obtained



using the feature extractor and label predictor when a
source domain sample is input. Instance weight wi is
computed as follows:

wi =
ePa(yi|xi)

ePt(yi|xi)
, (5)

where Pa(yj |xi) is the likelihood of class yj , and
Pt(yi|xi) is the likelihood of class yi, when a source
domain sample xi is input to the pre-classifier network.

3.2 Domain-classification loss

The instance weight wi is used to weight domain-
classification loss. Let Lsource

di
be a domain-

classification loss for a source domain sample. Instance
weighting multiplies Lsource

di
by wi. The domain clas-

sifier decreases loss of the source domain samples that
do not contribute to improving the recognition accu-
racy and increases the domain-classification loss of the
source domain samples that improve it. If xi is a source
domain sample, domain-classification loss Lsource

di
is de-

fined as Eq. (6).

Lsource
di

= Ldi(Gd(Rλ(Gf (xi; θf )); θd), di)wi. (6)

If xi is a target domain sample, domain-classification
loss Ltarget

di
is defined as Eq. (7).

Ltarget
di

= Ldi(Gd(Rλ(Gf (xi; θf )); θd), di). (7)

Let Nsource be the number of source domain samples
and Ntarget be the number of target domain samples
in a mini-batch. The domain-classification loss Ld of
the mini-batch is formulated as

Ld =
1

M
(

Nsource∑
i=1

Lsource
di

+

Ntarget∑
j=1

Ltarget
dj

), (8)

where M is mini-batch size.

3.3 Training procedure

The DANN [9] does not learn using source domain
data beforehand. At the early stage of training, the
effect of the GRL is rather small, caused by λ in Eq.
(3). Consequently, the DANN requires a large number
of network updates to acquire domain invariance. How-
ever, the proposed method learns the parameters of the
pre-classifier network with source domain data in ad-
vance. Then, the learned parameters are fine-tuned in
the training network. It can be assumed that the train-
ing network is pre-trained by source domain data. The
proposed method does not need to update the value
of λ such as in Eq. (3). The mini-batch in the train-
ing network consists of source and target domain sam-
ples. The training network has the same architecture

(a) Real-time

rendering image

(b) Pre-rendering

image

(c) Real image

Figure 3. Example of patch dataset.

as the DANN, so the source and target domain samples
can be input to the network. Instance weight is calcu-
lated using the ratio of the class-likelihood output from
the label predictor of the pre-classifier network to that
from the class predictor of the learning network. The
calculated instance weight is adapted for the domain-
classification loss of the source domain samples of the
training network.

4 Experiments

We experimented with a patch-image dataset com-
posed of three domains, including two types of CG data
and one type of real image (see figure 3). The two types
of CG data were real time-rendering and pre-rendering
images. The former is generated by a game engine
called Unreal Engine 4. Since the quality of the gen-
erated image is low in this CG data, generating time
is fast. Thus, it is easy to generate in large quantities.
the latter is generated by NVIDIA’s physically based
rendering technology IRay. This CG data takes time
than generating real-time rendering image, but it can
generate photorealistic and high-quality images. These
domain images are split into patch data, so that the
number of data is increased, and the local area can be
caught using patch data including the domain-specific
texture. Domain adaptation is performed between the
two types of CG images, and the model is evaluated
with real images.

4.1 Testing proposed method

Our proposed network is composed of a pre-classifier
and training network, based on the VGG-16 model [10].
The GRL and domain classifier in the training network
are connected for the output of the last convolution



Figure 4. Recognition accuracy in each domain.

layer of the feature extractor. For parameter optimiza-
tion, we used stochastic gradient descent with momen-
tum. The input-image size is 224 × 224 [pixels]. Each
domain sample consists of 25 classes. Each source do-
main contains 1000 images per class, and each target
domain contains 500 images per class. For comparison
methods, VGG-16 trained only with a source domain,
a DANN [9] in which instance weighting was not ap-
plied, and adversarial discriminative domain adapta-
tion (ADDA) [12] are used.

Results For accuracy comparison, we prepared 100
images per class from unlearned data of each domain
and used them as evaluation data. Then, the accuracy
with which the target domain was recognized was com-
pared using the real-time rendering, pre-rendering, and
real images. The results are shown in Figure 4. Com-
pared to the DANN, the proposed method achieved a
5.3% improvement in recognizing the pre-rendering im-
age. The accuracy with which the real-time rendering
image was recognized improved by 1.2%. Further, the
accuracy of recognizing the real image, the unlearned
domain, improved by 2.5%. Comparing the accuracy
of the proposed method and that of ADDA, which is
a method with more accurate recognition than DANN,
accuracy with which pre-rendering images were recog-
nized improved by 4.3%.

Discussion Figure 5 shows the transition of the
instance weight for the training samples. Figure 5 (a)
seems to reduce the instance weight with a small num-
ber of updates because the difference between domains
is small, making it is unnecessary to consider the differ-
ence between domains. In Figure 5 (b), at the begin-
ning of learning, Pt becomes smaller due to the effect
of the target domain on the feature extractor. Hence,
the model learns to consider the difference between do-
mains, which would cause the large number of updates
until convergence.

0 1000 2000 3000 4000 5000

Iteration

1.0

1.5

2.0

2.5

3.0

W
e
ig

h
t 

v
a
lu

e

(a)

0 1000 2000 3000 4000 5000

Iteration

1.0

1.5

2.0

2.5

3.0

W
e
ig

h
t 

v
a
lu

e

(b)

Figure 5. Two examples of transition of instance
weight. (a) Instance weight quickly converges.
(b) Instance weight slowly converges.

Table 1. Accuracy with different source domains.

Real-time [%] Pre-rendering[%] Real-time +
Pre-rendering[%]

98.6 82.8 81.8

4.2 Testing accuracy with different source do-
mains

We tested the effect of changing the source domain
on recognition accuracy using the proposed method.
To measure the performance of the proposed method,
we used a single domain for source and target domains.
In this section, we use real images as the target domain
and change the source domain to the following three
settings: real-time rendering, pre-rendering, and real-
time rendering + pre-rendering images. In each source
domain setting, we prepare 25,000 training images. As
target domain data, we prepare 12,500 training real
images. We evaluated with 2,500 real images.

Results As shown in Table 1, using pre-rendering
images (high-quality CG) as the source domain en-
abled better recognition performance than using real-
time rendering images (low-quality CG). In addition,
using both real-time rendering and pre-rendering im-
ages as source domains further improves the accuracy.
These results show similarities with the characteristics
of domain randomization [11], which improves recog-
nition and detection performance by learning various
domains simultaneously.

5 Conclusion

We have proposed unsupervised domain adaptation
using a gradient reversal layer with instance weight-
ing. We control the effect of samples that do not
contribute to improving recognition accuracy with in-
stance weighting. As a result of our evaluation exper-
iment, which consisted of training with 25,000 images



of real-time rendering CG and 12,500 images of pre-
rendering CG, the accuracy with which the actual im-
ages were recognized improved. We also found that us-
ing multiple CG domains as source domains improves
the accuracy. In future work, we will examine the ad-
justment method of the GRL and its application to
other tasks such as segmentation.

References

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ”Gradient-
Based Learning Applied to Document Recognition,”
Proceedings of the IEEE, pp. 22782324, 1998.

[2] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, ”Re-
visiting Unreasonable Effectiveness of Data in Deep
Learning Era,” International Conference on Computer
Vision, pp. 843852, 2017.

[3] B. Sun and K. Saenko, ”From virtual to reality: Fast
adaptation of virtual object detectors to real domains,”
British Machine Vision Conference, 2014.

[4] S. Hinterstoisser, V. Lepetit, P. Wohlhart, and K. Kono-
lige, ”On Pre-Trained Image Features and Synthetic
Images for Deep Learning,” arXiv preprint arXiv:1710.
10710v2, 2017.

[5] V.S.R. Veeravasarapu, C. Rothkopf, and R. Visvanathan,
”Adversarially Tuned Scene Generation,” Computer
Vision and Pattern Recognition, pp. 25872595, 2017.

[6] B. Fernando, A. Habrard, M. Sebban, and T. Tuyte-
laars, ”Unsupervised visual domain adaptation using
subspace alignment,” International Conference on Com-
puter Vision, pp. 29602967, 2013.

[7] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T.
Darrell, ”Deep Domain Confusion: Maximizing for Do-
main Invariance,” arXiv preprint arXiv:1412.3474v1,
2014.

[8] R. Gopalan, R. Li, and R. Chellappa, ”Domain Adap-
tation for Object Recognition: An Unsupervised Ap-
proach,” International Conference on Computer Vi-
sion, pp. 9991006, 2011.

[9] Y. Ganin and V. Lempitsky, ”Unsupervised Domain
Adaptation by Backpropagation,” International Con-
ference on Machine Learning, pp. 11801189, 2015.

[10] K. Simonyan and A. Zisserman, ”Very Deep Convolu-
tional Networks for Large-Scale Image Recognition,”
International Conference on Learning Representations,
2015.

[11] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba,
P. Abbeel, ”Domain randomization for transferring deep
neural networks from simulation to the real world,” In-
ternational Conference on Intelligent Robots and Sys-
tems, 2017.

[12] E. Tzeng, J. Hoffman, K. Saenko, T.Darrell, ”Adver-
sarial Discriminative Domain Adaptation,” Computer
Vision and Pattern Recognition, pp. 71677176, 2017.


