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Abstract

Advances in automated face analysis have made
possible webcam-based assessment of viewer emotion
during presentation of commercials and other video
content. A key assumption of this technology is that
viewer emotion is in response to the media. Is that as-
sumption warranted? Because viewer attention is sel-
dom assessed, emotional responses could result from
other sources, such as talking to a friend, enjoy-
ing a meal, or attending to a pet. We developed a
CNN-LSTM approach that detects attention and non-
attention to commercials using webcam and mobile de-
vices in settings of viewer’s choice. Because cultural
variation in viewer response is likely, we included par-
ticipants from both Western and Eastern countries.
Participants were 28,911 adults (ages 18 to 69 years)
in Europe, USA, Russia, and China. A total of 15,543
sessions (ca. 6.5 million video frames) was analyzed.
Accuracy was quantified using a variety of metrics.
Our approach outperformed baseline and achieved mod-
erate to high accuracy that approached that of human
annotators.

1 Introduction

In advertising, commercials are intended to cap-
ture viewer attention, elicit specific emotions, and ulti-
mately influence consumer behavior (i.e., sales). With
advances in computer vision and machine learning, it
has become possible to detect emotion during view-
ing of commercials, to do so in naturalistic settings in
large numbers of participants, and from that to pre-
dict sales performance in the marketplace [1, 2]. The
validity of measuring emotion in response to commer-
cials depends in part on the assumption that emotion
profiles are in response to commercials themselves. Is
that assumption valid? How often do viewers lapse into
inattention?

A key question in marketing or in any context in
which information is presented is whether content cap-
tures the intended receiver’s attention. Cognitive abil-
ities are limited, and in a world filled with digital mar-
keting noise, measuring attention in a quantifiable way

is of utmost importance for display advertising. At-
tention is the ability to focus on content while sup-
pressing focus on other stimuli. Attention is a gate-
keeper for a successful ad campaign. Depending on the
type of creative device, different ways exist for mea-
suring attention with various success. In video adver-
tising, view-ability metrics such as view-through rate,
video-completion rate and average view rate are com-
monly used. While summary measures such as these
are valuable, they often are subjective and fail to mea-
sure time-varying changes in attention over the course
of a presentation.

To address the need for objective, time-varying mea-
sures of attention, advertisers are developing custom
metrics that leverage widely available webcam-enabled
devices. They seek to measure viewer behavior that
is indicative of attention. Proposed behavioral indices
of attention include head pose, eye gaze, facial expres-
sion, and other non-verbal behavior. Automatic mea-
surement using computer vision and machine learning
affords an inexpensive, objective, scalable, and unob-
trusive way to measure viewer attention at video frame
rate. We propose an efficient CNN-based approach to
measure viewer attention to commercial media.

2 Existing Work

Tracking of attention has numerous practical ap-
plications, but the utilized features and the proposed
models can be highly dependent on the actual use case.
It is important to emphasize that attention is an um-
brella term involving multiple behavior signals, and it
is a key component of user engagement detection. For
assessment of attention in social interaction [3, 4, 5],
human-robot interaction [6, 7], virtual reality and gam-
ing [8], autonomous vehicles and driver safety [9, 10],
online learning [11, 12], market research [13, 14] and de-
velopmental psychopathology [15], head pose and eye
gaze direction have been the primary features mapped
to the hidden variable of attention. Head pose and
gaze have the advantage of being readily measured in
RGB video without use of dedicated eye tracking or
other specialized equipment. Our approach requires
no eye-trackers, infrared cameras or other specialized
sensors, which are expensive and not widely available.
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Our approach requires only an RGB webcamera placed
in front of the user. Our approach goes beyond gaze,
eye closure, and head motion [16, 17] to include com-
prehensive facial features.

In [18], visual distractions are detected by estimat-
ing the face pose of the driver, and sleepiness is inferred
from yawning, eyebrow movement, and degree of eye
closure. A recent work [19] on driver drowsiness de-
tection uses a multi-granularity Convolutional Neural
Network (CNN) on well-aligned facial patches and ex-
tracts facial representations. Representation are then
fed to a Long Short Term Memory (LSTM) network
to extract temporal information. Using temporal de-
pendencies, the trained network can distinguish blink-
ing and eye closure. In online education (e-learning)
settings, monitoring students’ attention and engage-
ment level is necessary to improve learning quality. The
EmotiW Challenge engagement task [20] yielded sev-
eral novel approaches. In [21] head pose and eye gaze
features have been extracted from each frame, then seg-
ment features have been created using a sliding win-
dow approach. The sequence of segments is processed
with an LSTM network with a final average pooling
layer. In common with [22], facial features as well as
upper body posture features are extracted followed by a
bidirectional LSTM with feed forward attention mech-
anism trained on the video level features. The authors
also introduced hand-crafted features from body pos-
ture information to adjust the final predicted engage-
ment level.

In the context of TV viewers, [14] trained a support
vector machine for binary engagement classification on
hand-crafted features using various temporal aggrega-
tion methods. Facial expression related features, along
with head position and head size features, had the most
discriminative power.

Because the facial area is a rich source of non-verbal
information about attention and engagement, it makes
sense to leverage well established modeling pipelines
from facial emotion research (FER), which has received
much attention in computer vision [23]. Recent work
suggests that deep learning approaches significantly
outperform hand-crafted ones and make possible train-
ing on far larger numbers of participants. We propose
a hybrid deep learning (DL) approach that combines
CNN for spatial features and LSTM for temporal fea-
tures. Both modules are state of the art in FER sys-
tems. We evaluate performance in relation to a baseline
method and manual human annotation.

3 Data Collection

3.1 Participants

Participants were recruited online in the US, Eu-
rope, China, and Russia by panel providers (Figure 1)
and ranged in age between 18 and 69 years. The pro-
portion of men and women was comparable. Of the

28,911 participants, video from 15,543 was selected for
analysis as described below.

3.2 Recordings

In a setting of their choosing, participants watched
one or more commercials on a personal computer (86%)
or mobile device (14%). Eighty percent of the partici-
pants watched a single commercial; the others watched
two or more (157 commercials were used in total). Par-
ticipants’ faces were recorded by webcam or by mobile
device. Because the settings were highly variable, vari-
ations in head pose, illumination, and occlusion were
common. While these factors might have been con-
trolled in a laboratory setting, in-the-wild data collec-
tion was preferred to minimize inhibition, increase par-
ticipation, and allow for greater naturalness in partic-
ipants’ responses. All participants gave informed con-
sent and received a small allowance (ca. $.25).

Participants’ video was streamed to the cloud for
processing. The average duration of the videos was
19.3s (std = 5.9s, min= 10s, max = 30s). Video was
captured at a standard resolution of 640 x 480 pixels.
Because of variation in internet connections, frame rate
varied (mean = 17 fps, std = 8 fps). Frame rate was
higher for mobile devices than for personal computers.

(a) Country

(b) Age

(c) Gender

Figure 1: Session statistics

3.3 Manual Annotation

Manual annotation of video-recorded behavior can
be laborious and expensive. The annotator must make
a judgment for each frame. A properly designed tool
can make a sizable difference in the time and effort
required. We developed a custom web-based tool that
enables efficient crowd-sourced manual annotation of
event onsets and offsets.

Crowd sourcing has the advantage of speed. A dis-
advantage is that workers are not experts. By provid-
ing preliminary training and aggregating annotations



from multiple annotators, however, high reliability can
be obtained [24]. Annotators received instruction and
practice with the annotation tool and were required to
pass a competence test prior to start of annotation.
For each video, 7 annotators provided ratings. Major-
ity voting was used to label ground truth for classifier
training and testing.

Annotators assigned each video frame to one of two
categories:

(1) Attention: The participant attends to the screen
as inferred from their head pose, gaze, eye closure,
and posture. Slight changes in each modality may
occur as participants respond to a commercial.

(2) No attention: The participant fails to look at
the screen, turns their head away from the screen,
closes their eyes, or becomes engaged in an unre-
lated activity (e.g., typing on or telephoning). In
some cases the participant may look at the screen,
but their attention is divided among several activ-
ities, such as talking, eating, or other tasks.

When level of attention could not be determined, they
had the option of labeling the frame or frames as bad
quality. Bad quality frames were characterized by in-
adequate illumination, self- or other occlusion, or inad-
equate camera orientation. The participant might be
outside of the video frame or have only a portion of
their face visible.

Treating the attention task as a binary classifi-
cation problem (attention/no-attention) reduces task
complexity. Annotators can proceed at a much higher
speed, and they experience less fatigue than would oth-
erwise be the case. Annotation time and cost thereby
are reduced relative to a more complex annotation
scheme.

An initial set of 29,000 sessions was selected for pro-
cessing. To reduce the cost of annotation, a two-wave
annotation strategy was employed. First, each video
was annotated by two workers. If either worker la-
beled the minority target class (”no attention”), an
additional 5 workers were requested, adding up to 7
judgments per each frame in total. Around 60% of the
initial set went through a second round, and the results
were further filtered based on the ”bad quality” labels
from the human annotators.

The cleaned ground truth consisted of 15,543 ses-
sions, ca. 6.5 million frames. Based on the majority
vote 20% of the frames were in the ”no attention” cat-
egory. Seventy one percent of the sessions included at
least one ”no attention” event in them. The distribu-
tion of sessions in Figure 2 shows the ratio of frames
annotated as ”no attention” out of all the frames in a
session.

Following Rosenthal [25], the effective reliability of
the aggregated annotations was quantified using the
Spearman-Brown formula:

RSB =
nr

1 + (n− 1)r
(1)

Figure 2: Distribution of the ratio of no attention
frames out of all frames in a session

where RSB = ’effective’ reliability, n = number of
judges (7), r = mean reliability among all n judges,
calculated from all possible annotator pairs.

Table 1: Effective reliability of aggregated per-frame
annotation

Metric Attention
No

attention
Bad

quality

RSB 0.918 0.899 0.905

4 Classifier training

The attention recognition task is formulated as a
binary classification problem for each frame. First a
CNN model was trained on the still images leveraging
the spatial information in individual frames. Second,
using the CNNs last layer representation, temporal se-
quences were generated for training a recurrent neural
network. The models were implemented in Python us-
ing the Tensorflow and Keras libraries. All training
was performed on a Titan X GPU video card.

4.1 Pre-Processing

Each video frame was pre-processed. First, the face
was detected and then 49 fiduciary points were local-
ized [16]. These two steps often were combined to in-
crease processing speed. Given a high enough confi-
dence in the localized 49 fiduciary points in a given
frame, the position of the face in the following video
frame was assumed and only face alignment was per-
formed. Next, RGB images were converted to grayscale
and cropped to the face region. Face images were re-
sized to 50 x 50 dimensions for feeding into the first
layer of the CNN. Pixel range then was normalized be-
tween 0 and 1. Face frontalization [26] typically is an
important step in facial expression analysis. Because
head orientation is a key indicator of ”no attention”,



head orientation was not normalized. For the same
reason image rotations were not applied during data
augmentation.

4.2 Baseline method

We used head pose histogram features as a baseline
approach to estimate attention. Use of head pose as a
baseline was informed by current state of the art and
by the neurophysiology of head and gaze coordination.
Affectiva, for instance, uses head pitch and yaw as a
proxy for attention [27]. And head and eye gaze are
both coordinated by the medial longitudinal fasciculus
and moderately correlated, [28, 29]. For our imple-
mentation of baseline method, the algorithm used the
largest head pose variation within a sliding window of
approximately 2 seconds with 1 second strides.

4.3 CNN for Modeling Attention

The CNN model consists of 4 convolutional layers
and 4 fully connected layers ending with a softmax
layer giving a probability distribution over the two pos-
sible classes. Both convolutional and dense layers inter-
spersed with dropout and batch normalization layers
were used. To mitigate over-fitting, data augmenta-
tion was used (random horizontal flips, zooming, and
translations) during training to expose the network to
a large variety of training samples.

Four approaches were explored for handling the im-
balance in the dataset.

(1) Leave original class ratios, only reshuffle after each
epoch.

(2) Give a higher class weight for the minority class,
used for weighting the loss function (categorical
cross entropy) during training.

(3) Use a custom balanced batch iterator.
(4) Subsample negative class to balance out the two

classes.

Approach (1) and (3) proved most effective. The bal-
anced batch iterator over-sampled the minority class,
choosing samples randomly from both classes with re-
placement and applying on-the-fly random image aug-
mentation on each image. Adam optimization was used
with exponential learning rate decay and early stopping
to avoid overfitting.

4.4 Learning Sequences with LSTM

To leverage temporal variations in the features ex-
tracted by the CNN module, long short-term memory
(LSTM) is used to model the spatio-temporal depen-
dencies of consecutive frames. After the CNN com-
pletes training, representations from the last dense
layer are saved for each input frame. Fixed length se-
quences are generated from the representations for the
LSTM training. A sequence length of 35 time-steps

was chosen, which corresponds approximately to a 2s
video segment given the average frame rate of 17 fps.
In each sequence the label for the last frame is the
target building up a sequence using the preceding 34
frames. In case the actual target frame is dropped due
to bad facial alignment, the network makes no predic-
tion for that frame. Removing bad frames from the
queue, sequences are generated using only good qual-
ity frames. As in the CNN, the network ends with a
softmax layer using Adam optimization with learning
rate decay. LSTM training was done without balanced
batch iteration, thus maintaining the original distribu-
tion of samples.

5 Results

Training and test splits were obtained using a ran-
dom 80-20 split on the session level. Similarly training
was partitioned further into training and validation sets
for hyperparameter optimization. No participant ap-
peared in both training, validation, and test sets, and
the class ratios were the same across partitions (19.9%
train, 21.0% validation, 20.1% test).

Because different metrics correspond to different as-
pects of agreement and are affected differently by class
imbalance [30], we report several: Matthews Correla-
tion Coefficient (MCC), balanced accuracy (BA), area
under the Receiver Operating Characteristics Curve
(ROC AUC), and S score (also known as free-marginal
kappa) [31, 32].

S score is a chance-adjusted summary measure that
estimates chance agreement by assuming each category
is equally likely to be chosen at random. When applied
to two annotators or methods (e.g., manual and auto-
mated annotation), it is calculated as (2), where n00 is
the number of objects that both annotators or methods
assign to the negative (non-attention) class and n11 is
the number of objects that both annotators or meth-
ods assign to the positive class (attention). S score
is relatively robust to class imbalance [30]. For each
of the metrics, we present 95% confidence intervals to
quantify precision of estimate.

S =
(n00 + n11)/n− 1/2

1 − 1/2
(2)

Figure 3 shows an example of system output. The
probability of attention is high when the participant
is looking toward the screen and decreases when they
look or turn their head in another direction, or engage
in another activity. Short breaks in the signal happen
when face tracking fails.

Table 2 shows classifier performance on the frame
level when attention is the positive target class. Be-
cause annotators give only categorical scores, AUC for
them is not meaningful.

For all metrics, our classifier outperformed baseline
and approached the accuracy of manual annotators.



Figure 3: Example showing the predicted attention outputs of a user watching some video content on the screen

Table 2: Results with 95% confidence intervals

Model MCC S BA AUC

Baseline .30± .03 .59± .02 .65± .01 .74± .0
CNN .45± .02 .64± .02 .72± .01 .82± .0

CNN-LSTM .49± .02 .68± .02 .75± .01 .85± .0
Human .70± .08 .81± .08 .86± .06 -

Note. MCC is Matthews correlation coefficient, S free-
marginal kappa, BA balanced accuracy, AUC area under
ROC.

Table 3: Performance differences within subgroups
with 95% confidence intervals

Test data
grouped by

Partition MCC S BA

Country

AUS .46 ± .07 .68 ± .04 .73 ± .04
CHN .52 ± .07 .58 ± .06 .77 ± .03
FRA .45 ± .06 .66 ± .05 .73 ± .03
DEU .49 ± .05 .71 ± .03 .73 ± .03
RUS .45 ± .09 .66 ± .07 .74 ± .04
GBR .52 ± .05 .7 ± .04 .76 ± .02
USA .49 ± .04 .68 ± .03 .74 ± .02

Age
50-69 .46 ± .04 .69 ± .03 .72 ± .02
30-49 .49 ± .04 .66 ± .03 .75 ± .02
19-29 .48 ± .04 .64 ± .04 .75 ± .02

Gender
Female .49 ± .03 .67 ± .03 .75 ± .02
Male .47 ± .03 .66 ± .03 .74 ± .02

Device
Desktop .48 ± .02 .66 ± .02 .74 ± .01
Mobile .56 ± .06 .78 ± .04 .79 ± .03

As expected, agreement was lowest for MCC, which is
attenuated by imbalance among classes [30].

Performance was consistent across differences in
country, age, and gender (Table 3). Performance was
higher on mobile devices. Faster frame rate and fewer
occlusions on mobile likely contributed to this finding.

6 Discussion and Future Work

We developed an automated system that estimates
attention to commercial media on webcam or mobile
device. In contrast to state-of-the art deep networks
for image classification (e.g., VGG, Inception, and
ResNet), the system’s deep network has a light-weight
architecture. This light-weight architecture makes use
possible on devices that have small computation capa-
bilities or limited power, such as mobile phones.

In comparison with head-pose based measures of at-
tention, our approach achieved much higher accuracy
on multiple metrics and approached that of human an-
notators. Important for basic and applied research use,
the approach proved robust to variation in age, gender,
and country. Significant differences between these fac-
tors were absent or relatively minor.

A disadvantage of the deep learning approach is that
contribution of specific features (e.g., head turn) can-
not be quantified. We are exploring visualization meth-
ods to improve interpretability. While hand-crafted
features and shallow-learning might be considered, the
millions of video frames in 15,000 sessions exceed the
capacity of shallow learning. In other work, we wish
to consider the impact of variable sampling rate and
sequence duration and the relation between attention,
emotion expression, and product sales.

7 Conclusion

Our approach detected attention and non-attention
with moderate to high accuracy on both personal com-
puters and mobile devices. The approach was robust
to differences in country, age, and gender. It extends
the descriptive power of current approaches that es-
timate only emotion responsiveness or infer attention
from head pose only. Because emotion may be in re-
sponse to either target media (i.e., commercials) or dis-
tractors (e.g., another activity), the ability to capture
attention as well as emotion represents a valuable ex-
tension of current approaches.
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