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Abstract

This paper proposes a pose-based unsupervised em-
bedding learning method for action recognition. To
classify human action based on the similarity of mo-
tions, it is important to establish a good feature space
such that similar motions are mapped to similar vec-
tor representations. On the other hand, learning a fea-
ture space with this property with a supervised approach
requires huge training samples, tailored supervised key-
points, and action categories. Although the labeling cost
of keypoints is decreasing day by day with improvement
of 2D pose estimation methods, labeling video category
is still problematic work due to the variety of cate-
gories, ambiguity and variations of videos. To avoid
the need for such expensive category labeling, following
the success of “Skip-Thought Vectors”, an unsupervised
approach to model the similarity of sentences, we ap-
ply its idea to contiguous pose sequences to learn fea-
ture representations for measuring motion similarities.
Thanks to handling human action as 2D poses instead
of images, the model size can be small and easy to han-
dle, and we can augment the training data by projecting
3D motion capture data to 2D. Through evaluation on
the JHMDB dataset, we explore various design choices,
such as whether to handle the actions as a sequence of
poses or as a sequence of images. Our approach lever-
ages pose sequences from 3D motion capture and im-
proves its performance as much as 61.6% on JHMDB.

1 Introduction

Understanding human action plays an important
role for a wide range of social and industrial scenes,
such as similar video retrieval from web, analyzing cus-
tomer behavior to maximize sales, and so on.

The field of human action recognition has advanced
rapidly over the past few years. It has moved from
hand-crafted features[1] to learned convolutional neural
network features[2] and also from encoding appearance
information to encoding motion information[3].

However, in the case of using such robust and ac-
curate action classifiers in real world, several problems
remain to be addressed. Firstly, these approaches often
rely on large-amount of training videos for each target
domain at the training phase. Secondly, we have to
prepare large number of expensive annotated samples
for each action category. Although several large-scale
video datasets have been proposed like ActivityNet,

and Kinetics, it is practically infeasible and extremely
costly to prepare the same amount of videos for each
target domain. Finally, as a usability problem, since
these classifiers estimate input into seen categories, we
cannot add unseen category to the set of output op-
tions.

This paper proposes a pose-based unsupervised
motion embedding learning method and a domain-
independent framework for action recognition. Based
on the idea of “Skip-Thought Vectors”[4], an unsuper-
vised representation learning method in natural lan-
guage processing domain, our proposed method, “Skip-
Pose Vectors”, applies an encoder-decoder model to the
contiguous human pose sequences. Although prepar-
ing keypoint is expensive task, thanks to improvement
of 2D pose estimation methods[5] and pose tracking
methods, its cost is decreasing day by day. Treating
human action as a sequence of pose introduces several
advantages. Firstly, it simplifies problem to solve and
makes model small. Secondly, using only pose makes
the model focus to motion information. Finally, this
also enables us to augment the training data with sam-
ples from completely different domains, i.e. 3D motion
capture data. After training, we use the encoder of
our model as a motion feature extractor, apply sim-
ple dynamic time warping[6] to calculate similarities,
and classify inputs with nearest neighbor method. The
proposed framework is illustrated in Fig. 1.

The main contributions of this paper can be sum-
marized as follows:

• Inspired by skip-thought vectors, this paper pro-
poses an unsupervised motion embedding method
for action recognition.

• Handling human actions as 2D pose sequences, our
method allows us to augment the training data
with samples from another domain.

• As combining the proposed method with simple
dynamic time warping and nearest neighbor, our
framework has flexibility to add unseen categories.

We evaluate our proposed method on JHMDB[7],
a public datasets for action recognition tasks. Aug-
mentation using 3D motion capture data improves the
accuracy from 61.0% to 61.6% and exceeds the baseline
approaches by 6.1 percentage points.
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Figure 1. The area surrounded by a broken orange line shows the procedure for the training phase. The
area surrounded by a broken blue line shows the procedure in the test phase. Since our approach uses only
pose sequences from videos, the training phase does not need any labels for the action categories in videos.

2 Related works

2.1 Skip-Thought Vectors

Skip-thought vectors[4] is an unsupervised learning
method for sentence embeddings. This method uses
a sequence-to-sequence (seq2seq) model (see Fig. 2)
with one encoder model f(·; θc) and two decoder mod-
els g(·;ψp), g(·;ψf ) where θc, ψp and ψf are the pa-
rameters of each sub-models. Each sub-model con-
sists of recurrent neural networks (RNNs) and whole
model aims to directly model the conditional probabil-
ity p(sp, sf |sc) of mapping a certain sentence sc into
adjacent sentences sf and sp. It accomplishes such
goal through the encoder-decoder framework[8].

An important idea of this approach is that one can
learn representations from co-occurrence and context
of three consecutive sentences.

After training, the encoder is used to embed a sen-
tence into a feature space and the embedded features
are applied to similar sentence retrieval.

2.2 Using the Context of Pose Sequences

Since motion is a key part of actions, action recog-
nition studies have paid special attention to modeling
representations of human motion.

Martinez et al. proposed a seq2seq model for
pose prediction tasks[9]. Using 3D coordinate pose
sequences as inputs, they estimated future pose se-
quences based on the current pose sequence. From
their work, it turns out that there is a contextual rela-
tionship between pose sequences as well as sentences.
Srivastava et al. proposed an unsupervised pre-training
approach for video recognition [10]. They encode the

current sequence into feature vectors and simultane-
ously reconstruct the current sequence and future se-
quences based on encoded features. After unsupervised
training, they use the trained parameter as the initial
parameter of a multi-class classifier and fine-tune the
parameters using a few labeled samples in a supervised
manner.

2.3 Dealing with Varying Temporal Durations

One of the main issues in action recognition is that
sequences representing the same action may have differ-
ent lengths due to the velocity and style with which the
action is performed. Various approaches are used to ac-
count for this problem, such as adopting global feature
representation of the entire sequence, which generally
sacrifices information about the temporal structure of
the sequence. Another work has focused on feature ex-
traction from short periods and applied dynamic time
warping to calculate elastic distances[11].

3 Proposed Method

3.1 Skip-Pose Vectors

Inspired by skip-thought vectors[4], we use the
seq2seq structure model shown in Fig. 2 and treat
human actions as contiguous sequences. Each human
action is represented with a sequence of 2D keypoints
of human at each frame in the video. Specifically,
let an action a = (P 0 . . .P T−1) be a sequence of
poses, where P t = pt,0, . . . ,pt,J−1 denotes a concate-
nated keypoint locations, J is the number of joints,
and T is the length of a video. For each keypoint
j = 0, . . . , J − 1,pt,j = (xt,j , yt,j),∀(xt,j , yt,j) ∈ R2.



Figure 2. The skip-pose model. Given a triplets
of contiguous pose sequences (ap,ac,af ), where
a is a pose sequence of fixed length T , the model
encodes the current sequence ac into feature vec-
tor hc and tries to reconstruct the past sequence
ap and the future sequence af based on hc.

Unfortunately, keypoints may not be visible in
the images, or may not be detected even when visi-
ble. Therefore, we introduce a binary mask for each
keypoint to handle these uncertainties. Let â =
(M0 . . .MT−1) be a sequence of masks, where M t =
mt,0, . . . ,mt,J−1 denotes a concatenated boolean val-
ues whether corresponding keypoints are detected or
not. For each mask j = 0, . . . , J − 1,mt,j =
(bt,j , bt,j),∀bt,j ∈ {0, 1}. We apply the mask â to the
input a with element-wise multiplication in both train-
ing and testing phase. This can be interpreted that the
probability of dropout in ordinal deep learning chang-
ing to the probability of the keypoint existing outside
of the frame or the probability of failed detection.

In the original skip-thought vectors, sentences de-
limited by periods were used as inputs and outputs,
but in pose sequence there is no clear division crite-
rion, so we fix the lengths of inputs and outputs to
T .

Training is performed by minimizing the Euclidean
distance between GT poses and reconstructed poses.

To simplify the model structure, we share the pa-
rameters of FC* and FC** across encoder and two de-
coders as denoted in Fig. 3.

hc,f ,hc,p = f(ac,M c; θc) (1)

hc =
1

2
(hc,f + hc,p) (2)

ãp = g(hc;ψp) (3)
ãf = g(hc;ψf ) (4)

θ̂c, ψ̂p, ψ̂f =

arg min
θc,ψp,ψf

1

4
(||ãp − ap||2

+ ||ãf − af ||2) (5)

After training, the encoder is used as a feature ex-
tractor, and the internal state after encoding the fixed-

(a) Encoder (b) Decoder

Figure 3. The networks, which constitute
our proposed method. The figure on left side
shows the encoder, which treats each pose with
fully-connected (FC) layer and encodes with bi-
directional manner. The figure on right side
shows decoder, which reconstructs the past (fu-
ture) sequence based on encoded representation
hc and zero inputs. Like encoder input, decoder
also use FC layer to reconstruct poses. The pa-
rameters of FC* and FC** are shared across the
encoder and the two decoders.

length input is used as the feature representation of the
input. After extracting the feature vectors, the input
and the feature sequence of each registered dictionary
are aligned by dynamic programming, the similarity is
calculated, and the input is classified by nearest neigh-
bor method as described in Sec. 3.2.

3.2 Dynamic Time Warping and Similarity

After extracting the features from moments, we
align the feature sequences by dynamic time warping
(DTW)[6]. DTW is a simple dynamic programming al-
gorithm that provides the best alignment between two
sequences.In our case, once the similarity score map
is defined by the cosine similarities of all combination
of time steps between a query and a dictionary, DTW
provides the optimal time alignment. For example the
similarity score map S(·, ·) between query sample qi of
length Tqi and dictionary sample dj of length Tdj is
calculated as following, where hqi,tl is a feature vector
extracted from sample qi at time step tl.

S(qi, dj) =

 st0,t0 . . . st0,Tdj
−1

...
. . .

...
sTqi

−1,t0 . . . sTqi
−1,Tdj

−1

 (6)

where stl,tm = cos(hqi,tl ,hdj ,tm)

After obtaining the optimal time warping path P , the
final similarity score between the query and the dictio-
nary is calculated by simply summing the correspond-
ing similarity scores.

score =
∑

tl,tm∈P
stl,tm (7)

Figure 4 shows an example of a similarity score map
and the optimal time warping path.



Figure 4. Example of similarity score map. Time
steps in the query and dictionary are shown ver-
tically and horizontally, respectively. Whiter col-
ors indicates higher similarity between time steps.
The red line shows the optimum path obtained by
dynamic time warping.

(a) Original 3D pose

(b) Projected 2D pose

Figure 5. (a) An example of GT 3D pose. (b)
Example of projected from results from certain
distance. We change the camera position and ob-
tain countless projection results.

3.3 Data Augmentation

Thanks to the recent development of pose estimation
methods[5], it is possible to collect pose sequences as
time series corresponding to a video image at low cost.
However, automatic detection is not perfect, and the
output includes false positions and misses some true
positions. Therefore, we augment the training data
using 3D motion capture data that is taken in advance.

By using the 3D motion capture data, it is possi-
ble to prepare countless pose sequences from arbitrary
viewpoints. Furthermore, by using pose sequences
other than the target domain, it can be expected to
gain higher generalization performance.

Figure 5 shows an example of actor in the 3D motion
capture database Human 3.6M[12], which is used in
our experiments. In addition, the original 3D pose and
2D projected poses used in our augmentation are also
shown in Fig. 5.

Figure 6. Some sample frames from JHMDB[7].
We overlay GT pose with RGB lines. R: the back-
bone; G: right side body; B: left side body. Some
GT are misaligned.

4 Experiments

4.1 Settings

We evaluate our proposed method on a publicly
available action recognition dataset, JHMDB[7]. JH-
MDB is collected from various sources such as web
videos and movies, and proved to be realistic and chal-
lenging. It contains 21 categories such as “brush hair”,
“catch”, “clap”, and “wave” comprising 928 videos.

A remarkable aspect of this dataset is that each
video sample has been annotated with the positions
of 15 body keypoints at each time step. Some example
frames and GT poses are shown in Fig. 6. Thanks
to this feature, we can ignore the accuracy of keypoint
detection and compare the feasibility of feature extrac-
tors.

In the training phase, only keypoint annotations of
training samples are used. In the evaluation phase,
the training samples are registered as dictionary sam-
ples.Following the official evaluation protocol, we eval-
uate the mean average precision (mAP) of official cross
validations.

Each video contained in JHMDB has a resolution of
240 × 320 px, but there is large variation in the scale
and the position at which the main actor appears. In
order to suppress the effect of such fluctuations, for
each series a, coefficients for normalizing the maximum
and minimum value in the x and y direction of the
keypoints position of the beginning pose P 0 into the
range [−1, 1] is used as preprocessing to normalize the
position and scale of the entire pose. As a result, the
position and the scale at the start time are aligned
while keeping changes in the position and scale of the
person over a video. In JHMDB, however the keypoints
outside the frame are also annotated, but we treat them
as not detected and mask the corresponding mt,j with
(0, 0).

To the best of our knowledge, although some pre-
vious works use supervised approaches to JHMDB, no
prior works use an unsupervised approach. Therefore,
we compare the following simple approaches as baseline
methods.

1. Compressing the above features into 64 dimensions
by PCA.



Table 1. Evaluation of different approaches and settings when applied to JHMDB showing mAP.

Method Data augmentation Past decoding part
Length of input/output T
2 4 6

PCA 55.6 55.5 55.2
AE ✓ 58.7 58.5 55.4

Proposed
59.1 56.7 54.6

✓ 60.9 61.0 57.6
✓ ✓ 60.7 61.6 61.1

Proposed with image ✓ 12.8 11.7 14.0

2. Out model without RNN (i.e. replace the RNNs
in proposed method to auto encoder), and treat-
ing all the times of the input sequence as a con-
catenated one. We keep hyperparameters such as
number of layers and hidden units.

We also change several factors in the proposed
method to investigate the respective effects.

1. Presence or absence of decoding the past actions.

2. Data augmentation with external 3D data.

3. Proposed method using images instead of key
points. (i.e. instead of a keypoint, use an im-
age sequence cropped with bounding box of given
keypoints and resized to 64x32 are treated as input
series.)

When we use RNN or auto encoder (AE) as a feature
extractor, we use models with hidden units are 64 di-
mension.

We train our model using Adam with learning rate
of 10−3 and regularize the model with weight decay
of 10−5. We use the validation set to determine the
optimal training epochs

4.2 Evaluation Results

Table 1 shows the results of comparing the accuracy
by changing the length T of the input sequence used
for training and test. Since our approach shows higher
performance than PCA, it can extract more distinctive
feature vectors, better reflecting the similarity between
actions, by unsupervised learning. By comparing with
the results from AE, we can see the effectiveness of han-
dling actions as pose sequences by RNNs. Remove the
past decoding part from our proposed method causes
it to deteriorate to the same accuracy as AE, so we can
see that the past decoding part contributes positively
to the performance. By adding augmented data, the
accuracy is improved on the condition of the sequence
length is 5 or more. This is thought to be because the
variation of pose sequences does not increase even if
augmented data is added to short sequences.

We also conducted an experiment of proposed
method with image sequences. As Table 1 shows, this
condition showed lower performance than any other
baselines. It seems that JHMDB is too small to learn
the context of the image sequences, or that the RNN

Table 2. Comparison of mAP with state of the
art approaches on JHMDB.

Method mAP

P-CNN[13] 74.6
HLPF[7] 77.8
Proposed 61.6

model we used was too small to learn embeddings from
images. Skip-Thought is a simple embedding learn-
ing method which is possible because it uses pose se-
quences.

Table 2 shows a comparison of the results with those
of previous works. We mention that the other methods
use supervised approaches whereas our method uses an
unsupervised approach and shows results that are not
bad.

Figure 7 shows the relationship between the amount
of training data and accuracy. These results show that
the accuracy increases as the training data are aug-
mented, but the performance decreases after the aug-
mentation data exceed 105 samples.

Figure 8 shows the relationship between the propor-
tion of dictionary data to be registered and the accu-
racy of each method under non-augmented conditions.
As the proportion of registrations changes, our pro-
posed method consistently shows higher performance.
Additionally, even when the proportion of registrations
is reduced to about half, the accuracy is equivalent to
the baseline methods of condition under the fully reg-
istered.

4.3 Visualization

In order to better illustrate how our method rec-
ognizes similarities between pose sequences, we pro-
vide some examples of similarity score map between
the query and the nearest dictionary sample, and some
thumbnails. The map shows a gradual peak and DTW
tracks the peak.

5 Conclusion

In this paper, we have proposed a pose-based unsu-
pervised motion embedding method for action recogni-
tion. Since the approach handled human motion as 2D
pose sequence, we could train simple encoder-decoder
model for motion embeddings and simply augment the



(a) success case (b) failed case

Figure 9. Qualitative results. In each figure, the
images on the left side of the similarity map show
frames from the input query and the upper side
shows frames from the nearest dictionary sample.

Figure 7. The relationship between the number
of training samples vs. AP on JHMDB-split1.
The left end of the plot shows the AP on the
condition without data augmentation.

Figure 8. The relationships between the ratio of
registered dictionary samples vs. mAP on JH-
MDB. Registration ratio = 1.0 means that all
training samples are registered as dictionary sam-
ples.

training data by projecting 3D motion capture data
to 2D. We have also shown that combining our pro-
posed method with dynamic time warping and near-
est neighbours, we can calculate the similarity between
various length inputs and registered samples, and clas-
sify them. Experimental results on JHMDB showed
that our proposed method constantly outperformed
the baseline approaches. Moreover, it has shown that
the accuracy was improved as much as 61.6%, which
exceeded the baselines by 6.1 percentage points, by
augmenting the training data with samples from com-
pletely different domains, i.e. 3D motion capture data.
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[13] Guilhem Chéron, Ivan Laptev, Guilhem Cheron, Ivan
Laptev, and Cordelia Schmid. P-CNN: Pose-based
CNN features for action recognition. ICCV, 2015. 5


