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Abstract

The most important part of auto-calibration is the
estimation of the fundamental matrices and the correc-
tion of the distortions caused by optical systems. From
the fundamental matrices the state-of-the-art method
of Lourakis [17] can determine the intrinsic calibration
parameters. The prerequisite is that the fundamental
matrices are very accurate, so that subsequent meth-
ods can converge. State-of-the-art methods minimize
the epipolar error to approximate fundamental matri-
ces. If more than two views are given, the trifocal error
can theoretically also be used, but it is very noise sen-
sitive and therefore less practical. In this paper, we
propose a combination of both error types that leads to
consistently improved fundamental matrices compared
to the state of the art. The proposed method has been
thoroughly evaluated on both synthetic and real data
sets. Besides the increased probability that Lourakis’
method converges, the resulting intrinsic and extrinsic
parameters are of superior quality. The method is quasi
parameter-free, easy to implement, and requires only a
slightly increased computational effort.

1 Introduction

The task of calibration is to calculate the intrinsic
and extrinsic camera parameters. Basically, there are
two types of calibration approaches: On the one hand,
methods based on homographies, which exploit addi-
tional scene information such as planar structures or
calibration tools. On the other hand, auto-calibration
methods that allow a calibration of general scenes with-
out user interaction and additional assumptions.

All auto-calibration methods start with the estima-
tion of the fundamental matrices from point correspon-
dences. At the same time, distortion parameters are es-
timated to account for the underlying pinhole camera
model. In further steps intrinsic and extrinsic parame-
ters are extracted from the fundamental matrices. The
accuracy of the fundamental matrices is therefore deci-
sive for an exact calibration. Even with slightly inaccu-
rate fundamental matrices, it is likely that the intrinsic

calibration and thus the entire calibration process will
fail.

In this work we focus on auto-calibration because
of its many advantages in practice. The presented
procedure uses images from at least three different
views. Assuming static scenes, it is basically irrelevant
whether these images were taken with several cameras
at the same time or one after the other with only one
camera. In particular, active lighting elements such
as a projector treated as an “inverse” camera can also
be considered. In the following, we will therefore limit
ourselves to static scenes and use the term View to de-
scribe an image content including its pose, completely
independent of a point in time or whether an image is
captured or projected. We also do not limit the cam-
era settings used for the acquisition. Even if a single
camera is used, we do not assume that the camera set-
ting has remained constant for all images. Therefore,
shooting is supported with automatic image settings
such as auto-focus, as well as the use of different cam-
era models.

The only limitation we make for the observations
listed here is that all images reproduce the same scene
and largely overlap each other. The calibration can
be continued by exchanging the images. All partial
calibrations calculated in this way can subsequently be
optimized with the help of bundle adjustment.

The approach presented here is the first to combine
epipolar and trifocal relations, as well as distortions of
arbitrary order. Euclidean reconstruction does not re-
quire any information other than the raw image data.
For metric calibration it is sufficient to specify a camera
baseline or the dimensions of a sensor chip. Since the
proposed method is very robust to noise, it provides ac-
curate calibrations in situations where state-of-the-art
methods are likely to fail. Especially, no particularly
good initialization is required. Thus, the practical ap-
plicability of the method is superior to the current state
of the art.
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2 Related Work

Extensive research has been done in the field of
auto-calibration. Estimating the epipolar geometry be-
tween two views has been reviewed by Zhang in [27].
In a nutshell, Euclidean epipolar errors between point
correspondences are minimized in a nonlinear energy
functional. This approach represents the state of the
art when distortion-free input images and precise point
correspondences are available.

Torr and Zisserman [23] examined the trifocal tensor
to derive relationships between three images. Their ap-
proach depends on extremely precise point correspon-
dences and is therefore practically unsuitable. Brito et
al. [4] and Stein [20] proposed methods to estimate a
single radial distortion parameter. Fitzgibbon [9] com-
bined single parameter estimation with the calculation
of the epipolar geometry. Unfortunately, this approach
is limited because it requires constant intrinsic param-
eters for all views.

The most advanced distortion model has already
been introduced in 1966 by Brown [5] and is still state
of the art. Romera and Gomez [19] proposed a method
for approximating Brown’s distortion parameters using
calibration boards for homography estimation.

In the context of auto-calibration, Li et al. [16] pre-
sented an alternating method for simultaneously es-
timating distortions and fundamental matrices, com-
bining the work of Zhang and Brown. Unfortunately,
the resulting fundamental matrices are generally not
sufficiently accurate to apply Lourakis’ [17] state-of-
the-art method for further calibration. Gherardi and
Fusiello [10] extended this approach, but require very
good initialization and the choice of a large number of
weighting parameters, which are often not available in
practice.

3 Determining the Epipolar Geometry

The calculation of suitable fundamental matrices
that meet all expected requirements depends strongly
on the quality of the correspondences. Furthermore,
since the pinhole camera model is assumed for theoret-
ical consideration, it is crucial to correct distortions of
practical systems.

3.1 Background

Relations between the different views are given by
fundamental matrices Fij which model the epipolar ge-
ometry between image Ii and image Ij . Thereby, fun-
damental matrix Fij is defined as a rank two matrix
that satisfies the condition

pTj Fpi = 0, ∀ pi ∈ Ii, pj ∈ Ij . (1)

Epipolar Error A standard approach to approx-
imate (1) is to minimize the epipolar error for all cor-
respondences and all view pairs. For each point pair

Figure 1. Visualization of Eepipolar and Etrifocal

for an image point p and respective epipolar lines
l1 and l2 from two other views.

(pi, pj) this error is defined by the Euclidean distance of
the computed epipolar line lij = Fijpi to its respective
point pj in the other image:

d(pj , Fijpi) =
pTj Fijpi√

(lij)21 + (lij)22
, (2)

where (lij)1 and (lij)2 denote the first and second en-
try of epipolar line lij . Since this also applies to the
mapping FT

ij from pj to pi asymmetrically, both errors
can be combined to a least squares error by adding the
squared distances

Eij
epipolar = d(pj , Fijpi)

2 + d(pi, F
T
ijpj)

2. (3)

This error measure is symmetrical between two views.
Considering all epipolar relations between C views, this

results in C(C−1)
2 epipolar errors.

Trifocal Error Unlike the epipolar error, which
describes only relationships between two views, the
trifocal error connects relations between three views.
For a triple of point correspondences (pi1 , pi2 , pj) ∈
Ii1 × Ii2 × Ij , theoretically epipolar lines li1j = Fi1jpi1
and li2j = Fi2jpi2 should intersect in image point pj .
The squared Euclidean distance between intersection
sj(li1j × li2j) and measured point pj is defined by

Ej
trifocal = ‖pj − sj(Fi1jpi1 × Fi2jpi2)‖22, (4)

for (i1, j), (i2, j) ∈ D2, (i1, j) 6= (i2, j)

and Fkl = FT
lk for (k, l) ∈ D2 and k > l

with

sj = ((Fi1jpi1)1(Fi2jpi2)2 − (Fi1jpi1)2(Fi2jpi2)1)
−1
.

(5)

The set of indices D2 is given by all combinations of

views. For each image we can compute (C−1)(C−2)
2 tri-

focal errors, which leads to C(C−1)(C−2)
2 contributions

to the total trifocal error.



3.2 Fundamental Matrices

Generally, minimizing the epipolar error is well
suited to estimate fundamental matrices between two
views. The trifocal error, however, includes a more
global arrangement between all views and ensures that
all fundamental matrices are coherent. Nevertheless,
minimizing the trifocal error usually does not lead to
good results as it requires disproportionately good ini-
tialization to converge to the global minimum and is
sensitive to noisy data. Therefore, a combination of
both errors, linked by a scalar regularization parame-
ter τ ∈ R+

0 , is introduced to exploit the advantages of
both approaches. For a given set of N correspondences
in C views, optimal fundamental matrices are sought
as the rank two minimizers of functional (6).

argmin
Fij ∈ R3×3,
(i, j) ∈ D1

N∑
n=1

∑
(i,j)∈D1

E
ij,(n)
epipolar + τ

C−1∑
j=0

E
j,(n)
trifocal (6)

s.t. rank(Fij) = 2, ∀(i, j) ∈ D1 (7)

E
ij,(n)
epipolar and E

j,(n)
trifocal denote the errors with respect to

the n-th point correspondence.

3.2.1 Parameterization of Fundamental Matrices

Since a fundamental matrix has rank two and is up
to scale, it has seven degrees of freedom. Following
Csurka et al. [7] we parameterize the fundamental ma-
trix according to (8). This parameterization has an
optimal condition number, which is important for the
convergence rate of the numerical optimization.

F (f1, ..., f7) =


f6(f1f4 + f2f5)
+f7(f3f4 + f5)

f1f6 + f3f7 f2f6 + f7

f1f4 + f2f5 f1 f2

f3f4 + f5 f3 1

 (8)

Minimizing functional (6) under this parameterization
enforces property (7).

3.3 Distortion Correction

Due to the least-squares formulation, the quality of
a fundamental matrix, computed by minimizing (6),
strongly depends on highly accurate point correspon-
dences. Therefore, a distortion correction is essential.
According to Brown’s Model [5], every undistorted im-
age point p̂ is related to the observed distorted image
point p = (x, y)T by

p̂(cd, k1, ..., kL) =

cx + (x− cx)(1 +
L∑

l=1

kl(
r
d )2l)

cy + (y − cy)(1 +
L∑

l=1

kl(
r
d )2l)

 (9)

cd = (cx, cy)T denotes the center of distortion and
r
d ∈ [0, 1] the Euclidean distance of the normalized dis-
torted image point p to the center of distortion. Taking
into account that points ps are distorted in this way by
parameters cds , k1s , ..., kLs for s = 1, ..., C, the distor-
tions can be corrected by minimizing functional (10)
assuming fixed fundamental matrices.

argmin
cds
∈ R2, kls ∈ R,
l ∈ {1, ..., L},

s ∈ {0, 1, C − 1}

N∑
n=1

∑
(i,j)∈D1

E
ij,(n)
epipolar + τ

C−1∑
j=0

E
j,(n)
trifocal

(10)

3.4 Minimization

In order to obtain the desired epipolar geometry,
while correcting the distortions jointly, problems (6)
and (10) are alternately minimized. For both sub-
problems solutions can be found separately using trun-
cated Levenberg-Marquardt, while the variables of the
other sub-problem are kept constant. A global solu-
tion can finally be found by alternating between both
sub-problems.

A good initialization for matrices Fij can be
achieved by the Normalized-Eight-Point algorithm,
possibly combined with RANSAC to account for out-
liers. For the centers of distortion, the image centers
have appeared to be a good initialization for the views.
Although the principal point of projectors is generally
not in the image center, no special treatment is needed.
The radial distortion parameters kls are initialized with
zeros. Since the center of distortion is usually inside the
image, in most cases scaling factor d can be chosen as
half of the image diagonal. N ∈ {100, ..., 300} is a good
choice for the number of point samples to get accurate
results in an acceptable run time.

4 Intrinsic and Extrinsic Calibration

Lourakis et al. [17] introduced a method, based on
Kruppa’s equations, to estimate intrinsic parameters
directly from fundamental matrices. Therefore, at least
three views are necessary, while more views increase
the accuracy as well as the number of calibration pa-
rameters that can be estimated. The covariance of the
numerical minimization algorithm is used to weight the
uncertainties as described in [7] to enhance the stabil-
ity of the method. Lourakis is state of the art, but
requires epipolar relations of high accuracy. Standard
techniques (e.g. [27], [16], [10]) for calculating fun-
damental matrices generally do not provide the quality
necessary to estimate intrinsic parameters such as focal
length. The method presented in this work solves this
problem and provides fundamental matrices of accu-
racy high enough for precise intrinsic auto-calibration.

With precise fundamental matrices and calibration
matrices, extrinsic parameters of the views can be eas-
ily extracted, as described in [12], which completes the



Figure 2. Evaluation on synthetic data for increasing level of Gaussian noise. Back-projection errors (left),
angular errors (middle) and distortion coefficients (right) for epipolar, trifocal and the proposed minimization
method.

Euclidean auto-calibration. A metric calibration can
be inferred if e.g. one of the camera baselines is known.
Subsequently, the respective translation vector is sim-
ply scaled to the metric value.

5 Evaluation

The proposed method is evaluated to assess its ben-
efits. The effect of regularization parameter τ is ex-
amined on real and synthetic data sets. Note that the
method for τ = 0 minimizes the epipolar error, while
τ →∞ is a trifocal minimization. Since the minimiza-
tion of the epipolar energy term is state of the art [16]
and the trifocal error is often not practicable due to its
noise susceptibility, we compare the proposed method
relative to the pure epipolar minimization.

5.1 Test Data

Both synthetic and real data sets were acquired to
evaluate the proposed method. For all data sets, up
to 300 correspondences were carefully selected and val-
idated, in order to guarantee absence of outliers. In
both cases the same setup, comprised from two cam-
eras and a projection device, has been used. Such a
setup is quasi standard for most active scanning solu-
tions and is suitable for evaluation in the contexts of
active as well as passive methods.

For the real setup we used DSLR cameras with a
resolution of 6M pixels and a full-HD projector. The
synthetic setup reproduces the real setup. It was mod-
elled with Unity and has different principal points, var-
ious degrees of distortion, and different focal lengths.
Apart from that, the synthetic model is a perfect pin-
hole camera. In order to assess the robustness of the
proposed calibration procedure, the synthetic data sets
were artificially degraded. To this end, multiple data
sets with different levels of positional noise on the cor-
respondences (Gaussian with σ ∈ [0, 2] and µ = 0) were
derived. On this data, the back-projection error as well

as the angular error with respect to the cameras were
computed (see Figure 2).

For evaluation of the real data, a calibration with
several values for the regularization parameter τ ∈
[10−6, 104] was calculated. After computing the cali-
bration, the remaining epipolar as well as trifocal error
were estimated (see Figure 3).

5.2 Results

Using the synthetic data we observe that:

• For noise-free data the selection of τ is irrelevant,
since both error terms converge robustly to the
global minimum. (See Figure 2 for σ = 0). Also
the proposed combination provides the expected
result.

• For slightly noisy data (σ < 0.5) the trifocal er-
ror clearly outperforms epipolar optimization. Al-
though the proposed method is not better than the
trifocal minimization, it consistently outperforms
the state of the art (See Figure 2).

• For very noisy data (σ > 0.5), minimizing the tri-
focal error does not provide useful results. In this
case, minimizing the epipolar error is much more
robust and yields stable results. The same is true
for the proposed method, which consistently pro-
vides significantly better results than the state of
the art.

The proposed combination of both errors improves the
state of the art (i.e. epipolar optimization) for all cases
with σ > 0. Figure 2 gives an impression of the rela-
tion between noise and errors. In terms of the back-
projection error (left), the improvement is up to 30%
with respect to the state of the art. In terms of angu-
lar error (middle), we observe an improvement of 1-2
degrees. This is equivalent to a 3D point position error
of not less than 1.7cm assuming a baseline of 1m.



Figure 3. Mean epipolar error (top left, top middle) and mean trifocal error (bottom left, bottom middle)
computed from high quality (left) and noisy (middle) real data sets. Average errors from real data sets with
different noise levels (right).

To evaluate the accuracy of the distortion parame-
ters computed by the proposed method, we have gener-
ated distorted synthetic data using Unity. An example
for simultaneous distortion parameters (-0.01, 0.0005,
0.011) is given in Figure 2 (right). Unfortunately, the
parameter space under investigation is too large to al-
low extensive evaluation. We have therefore focused
on the evaluation of the first coefficient of the distor-
tion model, since it dominates the others and reflects
the majority of distortions caused by lenses. Gaussian
noise of σ ∈ [0, 1] was applied to investigate the influ-
ence of measurement errors. Figure 2 (right) shows the
estimated radial distortion coefficients for increasing
values of σ. We observe that all methods provide use-
ful distortion parameters. The proposed method pro-
vides consistently superior parameters, although the
improvement may be marginal.

5.2.1 Choice of Regularization Parameter τ

In Figure 3 all errors are given relative to the state
of the art (τ = 0), i.e. pure epipolar error optimiza-
tion. On the left side, the behavior of the mean epipo-
lar error (top) and the mean trifocal error (bottom)
is visualized. In total 100 uncorrelated data sets have
been investigated, using 300 high quality correspon-
dences respectively. By emphasizing the trifocal term,
both the trifocal error as well as the epipolar error are
improved.

Figure 3 (middle) visualizes the behavior of the er-
rors after adding weak Gaussian noise (σ = 0.3). We
observe that the minimization of the trifocal error in
the presence of noise does not lead to lower epipo-
lar errors, but the epipolar error increases significantly
(> 10%). Hence, adding a small amount of noise dra-
matically reduces the dependency (see Figure 1) be-
tween the epipolar and the trifocal error.

Since neither of the two errors is to be preferred in
principle, a combination of both errors is well reasoned.
Another suitable measure for the calibration quality
is the back-projection error. Applying the proposed
method, similarly to the previous section, to 100 uncor-

related data sets with different noise levels, results in
average errors visualized in Figure 3 (right). Minimal
back-projection errors were achieved with a selection
of τ = 10−3 over a large number of data sets. There-
fore, it can be assumed that τ is a constant, rendering
the proposed method quasi parameter-free. Note that
trifocal errors are usually much larger than epipolar er-
rors, a value of τ = 10−3 leads to nearly equal influence
of both errors to the minimization. In Figure 3 (right)
we show the original value of τ according to (6) in the
upper ordinate. The lower ordinate shows τ after a
transformation into the interval [0, 1] using normalized
energies.

6 Conclusions

A new method for robust computation of highly
accurate calibration of multiple views (i.e. cameras
and projectors) has been proposed and evaluated. The
method combines the advantages of epipolar and trifo-
cal approaches and eliminates many weaknesses, espe-
cially in the presence of noisy data. The method consis-
tently outperforms the state of the art with respect to
both, positional and angular error as well as the back-
projection error. A suitable regularization parameter
τ has been estimated and fixed, so that the resulting
method can be assumed parameter-free. We observe
that the optimal result is achieved when epipolar and
trifocal errors contribute about the same amount to
the calibration. The resulting fundamental matrices
are of very high quality and increase the probability
that state-of-the-art methods for intrinsic calibration
(e.g. Lourakis [17]) converge. Finally, the method is
easy to implement and needs only marginally increased
computational effort.
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