
Indexing in k-Nearest Neighbor Graph by Hash-Based
Hill-Climbing

Munlika Rattaphun
National Chiayi University

munlika.r@gmail.com

Amorntip Prayoonwong
National Chiayi University
aprayoonwong@gmail.com

Chih-Yi Chiu
National Chiayi University
cychiu@mail.ncyu.edu.tw

Abstract

A main issue in approximate nearest neighbor
search is to achieve an excellent tradeoff between search
accuracy and computation cost. In this paper, we ad-
dress this issue by leveraging k-nearest neighbor graph
and hill-climbing to accelerate vector quantization in
the query assignment process. A modified hill-climbing
algorithm is proposed to traverse k-nearest neighbor
graph to find closest centroids for a query, rather than
calculating the query distances to all centroids. Instead
of using random seeds in the original hill-climbing al-
gorithm, we generate high-quality seeds based on the
hashing technique. It can boost the query assignment
efficiency due to a better start-up in hill-climbing. We
evaluate the experiment on the benchmarks of SIFT1M
and GIST1M datasets, and show the proposed hashing-
based seed generation effectively improves the search
performance.

Index Terms - inverted index, nearest neighbor
graph, hill-climbing, hashing.

1 Introduction

Nowadays, nearest neighbor (NN) search in a large-
scale and high-dimensional dataset is a challenging
task in many research communities. NN search is mo-
tivated by the need of diverse applications in com-
puter vision, information retrieval, and machine learn-
ing. NN search can be considered as an optimization
problem of finding a collection of closest data to a given
query. To avoid exhaustive search, numerous approxi-
mate nearest neighbor (ANN) search methods are pro-
posed under the consideration of the balance between
speed and accuracy.

Vector quantization (VQ) is one of the most popular
approaches to address ANN search problems. VQ di-
vides the data space into clusters, each of which can be
approximately represented by its centroid. To quantize
a data point, we have to compute distances/similarities
for the data point with all centroids to find the near-
est one. The computational complexity is thus about
O(nD), where n is the number of centroids and D is
the data dimensions. When a query is given to be
soft assigned with the k nearest centroids, it has to
compute with all centroids and then sort them, taking
O(nD+n lg k) time. The computation overhead is not
negligible for large n and D.

Another effective approach for ANN search is kNN
graph [1]. The kNN graph is constructed offline for
each data point, which keeps the closest neighbors ac-
cording to a given distance/similarity metric. With af-
fordable space overhead, kNN graph characterizes use-
ful neighborhood relationships embedded in the data
space to facilitate ANN search.

In this paper, we propose an index method that em-
ploys kNN graph to accelerate the query assignment
process. We adopt the hill-climbing algorithm that tra-
verses kNN graph to find closest centroids for a query,
rather than calculating the query distances to all cen-
troids. Moreover, a modified hill-climbing algorithm is
presented with a novel seed generation method. That
is, instead of using random seeds in the original hill-
climbing algorithm, we generate high-quality seeds by
leveraging the hashing technique [2][3]. It boosts the
query assignment efficiency due to a better start-up of
the hill-climbing algorithm. Experiments are demon-
strated on two benchmark datasets of SIFT1M and
GIST1M. Results show the proposed hashing-based
seed generation can effectively improve the search per-
formance.

The remainder of this paper is organized as fol-
lows. In section 2, we present a brief review on NN
search related to kNN graph and hill-climbing. Sec-
tion 3 presents the detail of the proposed method. We
demonstrate some experimental results in section 4 and
give the conclusion in Section 5.

2 Related Work

The kNN graph is an index structure proposed to
avoid exhaustive search in ANN search tasks. A
straightforward way to construct kNN graph is an ex-
haustively comparison between each pair of vectors
in the offline phase. Then, top k nearest neighbors
for each reference vector are selected to generate kNN
graph. The computation complexity is about O(DN2),
where N is the number of data points. In order to de-
crease the computation cost, some approximate kNN
graph are proposed by using the graph structure [4],
tree structure [5][6] and hashing technique [7]. Al-
though these approaches perform well, they have the
problem of large memory consumption.

The hill-climbing algorithm [1][8] is a popular way
to utilize kNN graph for ANN search. It generates
multiple random seeds to traverse kNN graph, and
takes several iterations to refine the traversal result.
However, random seeds are easily trapped in local op-
tima and often visits unlikely NN candidates. To ad-
dress the problem and speedup the process, Zhao et
al. [8] proposed using inverted indexing in residual
vector space and applying cascaded pruning to avoid
redundant candidates. Still, it may take much time to
converge to a satisfactory accuracy.

3 Hash-Based Hill-Climbing

The proposed method consists of two parts. We first
construct kNN graph integrated with inverted index-
ing. Then we apply a modified hill-climbing algorithm

16th International Conference on Machine Vision Applications (MVA)
National Olympics Memorial Youth Center, Tokyo, Japan, May 27-31, 2019.

© 2019 MVA Organization

02-02

to traverse kNN graph for ANN search. Details are
elaborated in the following.

3.1 kNN graph construction

Given a reference set of data points {xi ∈ RD|i =
1, 2, ..., N}, where N is the number of reference data
points and D is the number of data dimensions. We
apply principle component analysis (PCA) to reduce
the dimensionality of xi to d dimensions. Then k -
means clustering is used to divide the compressed data
space into M clusters {cj |j = 1, 2, ...,M}, where cj
represents the centroid of the j th cluster. Finally, we
construct kNN graph, as summarized in Algorithm 1.
Each cluster is associated with a list of k nearest cen-
troids that are closest to the cluster, where in step
4, function arg min

j
(A, k) returns k indexes with the

smallest values in set A.

Algorithm 1: kNN graph construction

Input : clusters {cj |j = 1, 2, ...,M}; the number
of nearest centroids for each cluster k ;

Output: kNN graph for the clusters;
1 for i = 1, ...,M do
2 for j = 1, ...,M do
3 distance[j]← ‖ci − cj‖2;

4 φ← arg min
j

(distance[j], k);

5 return φ for ci;

3.2 Hill-climbing seed generation

To improve the performance of the hill-climbing al-
gorithm, we present a novel seed generation method
based on the hashing technique. The cluster centroids
are hashed into binary codes, which are the index keys
of an inverted table. When a query is given, we match
its hash code in the inverted table and take the asso-
ciated centroids from kNN graph as the initial seeds
of hill-climbing. Unlike random seeds, the hash-based
seeds are generally distributed around the query, pro-
viding a better initialization for hill-climbing.

We employ two hashing methods, namely, locality-
sensitive hashing (LSH) [2] and iterative quantization
(ITQ) [3] to produce the hash function f. LSH em-
ploys random projection to embed a data point into a
binary code. It states the probability that two points
are hashed to the same bit is proportional to their simi-
larity. Further, ITQ tries to find the optimized rotation
of PCA projection data. Therefore, ITQ is expected to
preserve the data locality structure in a shorter binary
code than LSH.

Through f, we embed each data point xi to a c-bit
binary code: hxi

= f(xi) ∈ {0, 1}c. We then construct
an inverted table by matching the cluster id of xi and
hash value of yi. Fig. 1 gives an example to illustrate
the inverted table construction process. A pair of data
id xi and cluster id ci represents that the data point
is assigned to the cluster. The hash code hxi of the
data point is generated by f. The inverted table is
constructed by using the hash codes as the index keys
to associate with the cluster ids.

Figure 1. Inverted index table construction.

Given a query q, it is hashed by hq = f(q) to retrieve
the cluster ids as the initial seeds. For example, in Fig.
1, suppose that hash value of hq = 011, then the initial
seeds for q are c1 and c3. Then we adopt the enhanced
hill-climbing algorithm [8] that traverses kNN graph to
refine the closest clusters iteratively. Finally, the data
points belonging to the closest clusters are regarded as
candidates, which are further examined their distances
with q to output the final NNs.

4 Experiment

In this section, we conduct experiments to evaluate
the proposed method in terms of recall and computa-
tion cost.

4.1 Dataset

We experimented on SIFT1M and GIST1M datasets
of BIGANN [9] that contain one million SIFT and
GIST vectors together with 10000 and 1000 query
vectors, respectively. Each query provides the first
100 nearest neighbors of ground truth with the small-
est Euclidean distances. The properties of the two
datasets are summarized in Table 1. We applied PCA
to reduce the dimensionality of SIFT1M from 128 to
32 dimensions and that of GIST1M from 960 to 120
dimensions. Afterwards, we used k -means cluster-
ing to generate clusters. In this study, we evaluate
the performance under different numbers of clusters
M ∈ {256, 1024, 4096, 16384}.

Table 1. Summary of SIFT1M and GIST1M
datasets

Datasets SIFT1M GIST1M
data dimensions 128 960
data 1,000,000 1,000,000
queries 10,000 1,000
ground truth per query 100 100

4.2 Implementation

We implemented several configurations for the hill-
climbing algorithm:

• Exhaustive search. Euclidean distances be-
tween a given query and cluster centroids are cal-
culated to select clusters in an exhaustive way.
The hill-climbing algorithm is not applied here.

• Random seed hill-climbing. Initial seeds for
hill-climbing are generated randomly.

100 150 200 250
Number of Euclidean distance computations

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Re
ca
ll

M=256, k=20, s=20

Exhaust
Random
8-bit LSH

12-bit LSH
8-bit ITQ
12-bit ITQ

200 400 600 800 1000
Number of Euclidean distance computations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll

M=1024, k=20, s=20

Exhaust
Random
8-bit LSH
12-bit LSH
8-bit ITQ
12-bit ITQ

102 103

Number of Euclidean distance computations

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Re
ca

ll

M=4096, k=20, s=20

Exhaust
Random
8-bit LSH
12-bit LSH
8-bit ITQ
12-bit ITQ

102 103 104
Number of Euclidean distance computations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
ca
ll

M=16384, k=20, s=20

Exhaust
Random
8-bit LSH
12-bit LSH
8-bit ITQ
12-bit ITQ

Figure 2. Recall in SIFT1M, where k and s are fixed at 20.

100 125 150 175 200 225 250
Number of Euclidean distance computations

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Re
ca
ll

M=256, k=20, s=20

Exhaust
Random
8-bit LSH

12-bit LSH
8-bit ITQ
12-bit ITQ

200 400 600 800 1000
Number of Euclidean distance computations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
ca
ll

M=1024, k=20, s=20

Exhaust
Random
8-bit LSH
12-bit LSH
8-bit ITQ
12-bit ITQ

103

Number of Euclidean distance computations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
ca

ll

M=4096, k=20, s=20

Exhaust
Random
8-bit LSH
8-bit ITQ

103 104
Number of Euclidean distance computations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
ca
ll

M=16384, k=20, s=20

Exhaust
Random
8-bit LSH
12-bit LSH
8-bit ITQ
12-bit ITQ

Figure 3. Recall in GIST1M, where k and s are fixed at 20.

• 8-bit LSH and 12-bit LSH seed hill-climbing.
LSH [2] is used to transform data points into 8 and
12-bit hash codes.

• 8-bit ITQ and 12-bit ITQ seed hill-climbing.
ITQ [3] is used to transform data points into 8 and
12-bit hash codes.

Other parameters were set as follows: the number of
the neighboring clusters kept in kNN graph of a cluster
k ∈ {20, 30}, and the number of seeds for hill-climbing
search s ∈ {10, 20, 30}. Experiments were run on a PC
using Windows 10, with Intel Core i7 3.4 GHz CPU
and 32 GB of RAM. The program was implemented in
Python and C++.

4.3 Result

We use the recall rate to measure the correctness
in NN search. Let Q = {q1, q2, ..., qT } be a set of T
queries, and G = {g1, g2, ..., gT } be the ground truth,
where gt is the first NN of ground truth for qt. Recall
is defined as:

recall =
1

T

T∑
t=1

f(Rt),

f(Rt) =

{
1 ifgt ∈ Rt;

0 otherwise.

(1)

where Rt is the retrieved set in response to qt. In addi-
tion, we count the number of Euclidean distances cal-
culated between query and cluster centroids to reflect
the computation cost for each configuration.

Figs. 2 and 3 show the results under different M
in SIFT1M and GIST1M, respectively, where k and s
are both fixed to 20. The X-axis denotes the number
of Euclidean distance computations during the search
process, and the Y-axis denotes the recall rate. The ex-
haustive method yields the best recall, which is served

as the accuracy upper bound. However, the compu-
tation cost is the highest due to the exhaustive com-
parisons between the given query and all clusters. The
other methods, say, random, LSH, and ITQ, all run five
iterations in the hill-climbing algorithm. It shows the
recall rates get close to the upper bound with a few iter-
ations and spend much less computations. Clearly in a
larger number of clusters, more iterations are required
to get converged. Both LSH and ITQ methods outper-
form the random method. Particularly, ITQ leverages
the data distribution to generate seeds and thus yields
the closest recall to the upper bound and spends the
least computation cost. In addition, using more bits
in LSH or ITQ generally increases the accuracy and
computation cost. However, the influence is insignifi-
cant. Thus, the 8-bit hash code is considered sufficient
to generate high quality seeds for hill-climbing.

Figs. 4 and 5 show the results against different k ∈
{20, 30} and number of seeds s ∈ {10, 20, 30}, where M
is fixed at 4096. We observe that increasing k makes
the convergence of recall faster than increasing s, with
the price of more space required to store larger kNN
graph.

5 Conclusion

In this paper, we propose a novel index method for
ANN search that employs kNN graph to accelerate the
query assignment process. A modified hill-climbing al-
gorithm is presented with a hash-based seed generation
method, which initializes high-quality seeds and thus
improves the hill-climbing algorithm. Experimental re-
sults on SIFT1M and GIST1M datasets demonstrate
the superiority of the proposed method.

Acknowledgment

This work was supported by the Ministry of Sci-
ence and Technology, Taiwan, under grants MOST
106-2221-E-415-019-MY3.

102 103

Number of Euclidean distance computations

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Re
ca

ll

M=4096, k=20, s=10

Exhaust
Random
8-bit LSH
8-bit ITQ

102 103

Number of Euclidean distance computations

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Re
ca

ll

M=4096, k=20, s=20

Exhaust
Random
8-bit LSH
8-bit ITQ

102 103

Number of Euclidean distance computations

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Re
ca

ll

M=4096, k=20, s=30

Exhaust
Random
8-bit LSH
8-bit ITQ

102 103

Number of Euclidean distance computations

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Re
ca

ll

M=4096, k=30, s=10

Exhaust
Random
8-bit LSH
8-bit ITQ

102 103

Number of Euclidean distance computations

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Re
ca

ll

M=4096, k=30, s=20

Exhaust
Random
8-bit LSH
8-bit ITQ

102 103

Number of Euclidean distance computations

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Re
ca

ll

M=4096, k=30, s=30

Exhaust
Random
8-bit LSH
8-bit ITQ

Figure 4. Recall in SIFT1M, where M is fixed at 4096.

102 103

Number of Euclidean distance computations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
ca

ll

M=4096, k=20, s=10

Exhaust
Random
8-bit LSH
8-bit ITQ

103

Number of Euclidean distance computations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
ca

ll

M=4096, k=20, s=20

Exhaust
Random
8-bit LSH
8-bit ITQ

103

Number of Euclidean distance computations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
ca

ll

M=4096, k=20, s=30

Exhaust
Random
8-bit LSH
8-bit ITQ

102 103

Number of Euclidean distance computations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
ca

ll

M=4096, k=30, s=10

Exhaust
Random
8-bit LSH
8-bit ITQ

103

Number of Euclidean distance computations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
ca

ll

M=4096, k=30, s=20

Exhaust
Random
8-bit LSH
8-bit ITQ

103

Number of Euclidean distance computations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
ca

ll

M=4096, k=30, s=30

Exhaust
Random
8-bit LSH
8-bit ITQ

Figure 5. Recall in GIST1M, where M is fixed at 4096.

References

[1] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang,
“Fast approximate nearest-neighbor search with k-nearest
neighbor graph,” in Proceedings of International Joint
Conference on Artificial Intelligence, vol. 22, no. 1, 2011,
p. 1312.

[2] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni,
“Locality-sensitive hashing scheme based on p-stable
distributions,” in Proceedings of the annual symposium
on Computational geometry. ACM, 2004, pp. 253–262.

[3] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “It-
erative quantization: A procrustean approach to learn-
ing binary codes for large-scale image retrieval,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 35, no. 12, pp. 2916–2929, 2013.

[4] J. Wang, J. Wang, G. Zeng, R. Gan, S. Li, and B. Guo,
“Fast neighborhood graph search using cartesian con-
catenation,” in Proceedings of the IEEE International

Conference on Computer Vision, 2013, pp. 2128–2135.
[5] M. Muja and D. G. Lowe, “Scalable nearest neighbor

algorithms for high dimensional data,” IEEE Trans-
actions on Pattern Analysis & Machine Intelligence,
no. 11, pp. 2227–2240, 2014.

[6] C. Fu and D. Cai, “Efanna: An extremely fast approx-
imate nearest neighbor search algorithm based on knn
graph,” arXiv preprint arXiv:1609.07228, 2016.

[7] Y.-M. Zhang, K. Huang, G. Geng, and C.-L. Liu, “Fast
knn graph construction with locality sensitive hashing,”
in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 2013, pp. 660–674.

[8] W.-L. Zhao, J. Yang, and C.-H. Deng, “Scalable nearest
neighbor search based on knn graph,” arXiv preprint
arXiv:1701.08475, 2017.

[9] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg,
“Searching in one billion vectors: re-rank with source
coding,” in Acoustics, Speech and Signal Processing,
IEEE International Conference on, 2011, pp. 861–864.

