
Zero-shot Learning of 3D Point Cloud Objects

Ali Cheraghian, Shafin Rahman and Lars Petersson
Australian National University, Data61-CSIRO

firstname.lastname@anu.edu.au

Abstract

Recent deep learning architectures can recognize in-
stances of 3D point cloud objects of previously seen
classes quite well. At the same time, current 3D
depth camera technology allows generating/segmenting
a large amount of 3D point cloud objects from an ar-
bitrary scene, for which there is no previously seen
training data. A challenge for a 3D point cloud recog-
nition system is, then, to classify objects from new,
unseen, classes. This issue can be resolved by adopt-
ing a zero-shot learning (ZSL) approach for 3D data,
similar to the 2D image version of the same problem.
ZSL attempts to classify unseen objects by comparing
semantic information (attribute/word vector) of seen
and unseen classes. Here, we adapt several recent 3D
point cloud recognition systems to the ZSL setting with
some changes to their architectures. To the best of our
knowledge, this is the first attempt to classify unseen
3D point cloud objects in the ZSL setting. A standard
protocol (which includes the choice of datasets and the
seen/unseen split) to evaluate such systems is also pro-
posed. Baseline performances are reported using the
new protocol on the investigated models. This inves-
tigation throws a new challenge to the 3D point cloud
recognition community that may instigate numerous fu-
ture works.

1 Introduction

In recent years, a number of methods have been in-
troduced addressing the problem of 3D object classifi-
cation of point clouds [18, 28, 10]. They have achieved
outstanding accuracy on available 3D datasets, in most
cases reaching a greater performance than 90%. This
achievement is due to employing deep end-to-end learn-
ing on point cloud objects/scenes. Classical attempts
of this kind requires numerous pre-processing steps in-
volving voxel representations of 3D models [29], pro-
jecting it to 2D spaces [23], using pre-trained networks
like VGG [22] etc. Those approaches are not only de-
pendent on higher-end hardware but also not extend-
able to scene understanding/point classification/shape
completion. The emergence of end-to-end learning on
3D point cloud data has solved most of the previous
problems using one single deep neural network.

Nowadays, thanks to the availability of 3D depth
cameras, obtaining 3D models of objects and environ-
ments are easier than before [2, 6]. This has opened up
the space of potential applications, and also brings with

Figure 1. Traditional 3D point cloud recognition sys-
tems can only classify objects from seen classes. However,
adopting a ZSL approach can enable a system to classify
objects from classes that are not observed during training.

it new challenges. For example, it is a likely scenario
that we have access to, or is capturing, 3D models for
which we do not have any labels. Making use of such
data is a challenge, and we are in this paper explor-
ing whether a zero-shot learning (ZSL) approach can
be utilized (See Figure 1). To the best of our knowl-
edge, this is the first time ZSL has been applied to
3D object recognition. In the 2D image domain, on
the contrary, there are many works addressing the ZSL
problem in the past few years [19, 32, 9, 3]. A gen-
eral ZSL architecture introduces semantic information
(like attributes [8] or word vectors [14, 16]) of classes
to transfer the knowledge from the seen classes to the
unseen classes. During training of ZSL, many methods
convert image features to the semantic embedding [8]
or a latent space [30], or vice versa [32]. Later, in test-
ing, instances of unseen classes are projected to the
same space learned during training, to predict a match-
ing score based on the similarity between the projected
embedding and the unseen semantic embedding. With
the motivation from the 2D version of the ZSL prob-
lem, we use semantic information from classes inside
the deep network to classify unseen 3D point cloud ob-
jects.

In this paper, we conduct a series of experiments
utilising two popular structures traditionally used for
feature extraction in 3D point clouds. These are Point-
Net [17] and EdgeConv [28]. We combine these with
two pooling methods, Maxpooling and NetVlad [1].
With the help of these base architectures, we build
a new structure that combines point cloud features
with word vector semantic features thereby enabling
the classification of previously unseen 3D classes. The-

16th International Conference on Machine Vision Applications (MVA)
National Olympics Memorial Youth Center, Tokyo, Japan, May 27-31, 2019.

© 2019 MVA Organization

02-01

ory is here provided as to how to combine semantic
word vectors and adapt the previous structure to per-
form the ZSL task. Moreover, based on our experi-
ments, we demonstrate that our proposed framework
for classification of unseen 3D models is useful when
the word vector semantic embedding are used during
the training stage. Our proposed framework address-
ing the ZSL task is shown to produce good results on
a number of benchmark datasets. In this paper, our
main contributions are as follows:

• We present a new challenge to the ZSL community
which aims to classify 3D point cloud objects with-
out having previously observed a single instance of
the classes they belong to.

• We adapt established 3D point cloud classification
methods to perform ZSL which can serve as base-
line performance for further research in this direc-
tion.

• We introduce a new evaluation protocol for ZSL
methods on 3D point clouds which consists of a
seen and unseen split of data from the datasets
ModelNet40 [29], ModelNet10 [29], Mcgill [21] and
SHREC2015 [12].

2 Related Work

3D point cloud object recognition architecture:
The early methods utilizing deep learning for operat-
ing on 3D point clouds used volumetric [29] or multi-
view [23] representations in order to work with 3D data.
Recently, the trend in this area has shifted to instead
using raw point clouds directly [18, 28, 10], without
any preprocessing step. These methods do not suffer
to the same degree from scalability issues as the volu-
metric representation does, and they do not make any
a priori assumptions onto which 2D planes, and how
many, that the point cloud should be projected on, like
the view-based methods do. PointNet [17] was the first
work that operated on raw point clouds directly at the
input of the network. PointNet used a multi-layer per-
ceptron (mlp) [20] to extract features from point sets,
and max-pooling layers to remove the otherwise inher-
ent issue of permutation from the point clouds. Later,
many methods [18, 28, 10] were proposed to overcome
the limitations of PointNet, which does not utilize lo-
cal features or a more advanced pooling operation than
max-pooling. At the time of writing, only the tradi-
tional recognition case where all the classes of interest
have been seen at training time, have been considered
in the case of 3D point cloud data. The current liter-
ature does not address the zero-shot version of the 3D
recognition problem. In this paper, for the first time,
we perform ZSL on 3D point cloud objects.
Zero-shot learning on 2D images: In the im-
age recognition literature, zero-shot learning (ZSL) has
made reasonable progress over the past few years [19,

32, 8]. The objective of such learning is to recognize
objects from unseen classes not used during training.
To do that, semantic information about the class la-
bels in the form of attributes/word vectors are taken
advantage of. Image features are usually transferred
to the dimension of the semantic vector to obtain a
matching score by comparing it with seen/unseen se-
mantic vectors. Some of the notable research directions
in this line of investigation include exploring class at-
tribute association [3], domain adaptation [4], the ef-
fect of hubness [32], generalized ZSL [19], inductive vs.
transductive ZSL [11], multi-label ZSL [9] etc. In this
paper, we apply zero-shot learning on 3D point cloud
objects instead of the traditional 2D image.

3 Our approach

Problem formulation: Suppose we define a set
of seen Ys = {1, ..., S} and a set of unseen Yu =
{S + 1, ..., S + U} labels, where Ys ∩ Yu = ∅, and
S and U are the total number of seen and unseen la-
bels respectively. There are associated semantic class
embeddings (word vectors) for all samples in both seen
and unseen sets, which is defined as Es = {es : s ∈ Ys}
and Eu = {eu : u ∈ Yu} respectively, where es, eu ∈
Rd. The number of instances for sets of seen and un-
seen classes are ns and nu respectively. The matrices
Xs =

[
x1
s, ...,x

ns
s

]
for s ∈ Ys, and Xu =

[
x1
u, ...,x

nu
u

]
for u ∈ Yu are point cloud features for the seen and
unseen classes respectively, where for both seen and un-
seen instances x = {p1, ...,pn} is an unordered point
set, where pi ∈ RF . In the simplest setting of F = 3,
each point contains 3D coordinates x, y, and z. To
place the problem in a zero-shot setting, it is crucial to
mention that, Xu, Yu and Eu are not observed during
the training stage. Here, we define the ZSL task ad-
dressed in this work: Only point cloud features of seen
classes Xs are used in the training phase. The aim is
to assign an unseen class tag u ∈ Yu to a given unseen
3D point cloud shape using the related feature vector
xu.

Training: Given an unordered point set represent-
ing an object from a seen class xs = {p1, ...,pn}, a set
function is defined such that any permutation of the
point set becomes irrelevant,

f(p1,p2, ...,pn) ≈ g(h(p1, β)), h(p2, β)), ..., h(pn, β))

where f is the set function, h is the feature extraction
function, g is the pooling function with the ability to re-
move the effects of permutation of points in a set, and β
represents a set of arguments associated with pi. The
feature extraction function h(pi, β) extracts a richer
representation from the point cloud in a higher dimen-
sion. For feature extraction, two different algorithms
for feature extraction, h(pi, β), are applied. That is,
global feature extraction as done in PointNet [17], and
local feature extraction as done in EdgeConv [28]. In

Feature
Extraction

n × 3

w2v/Glove

fully connected layers

f

f
′

 PointNet/EdgeConv

Maxpooling/NetVlad

S × d

u/(c × u)

h(, θ)pi

Pooling

mlp(64,64,64,128,u)

(256,512,d)

Loss

Figure 2. A
general frame-
work of the
architecture
using semantic
word vectors.
Similar to a
traditional 3D
point cloud
recognition sys-
tem, it produces
a prediction
score for every
seen object.
The inference of
unseen classes
is made based
on those seen
predictions.

PointNet, h(pi, β) = h(pi) : Rd → Rd′
, β = {∅},

since each point is considered separately, the extracted
feature vector contains global information. In Edge-
Conv [28], which extracts local features as well as
global features, h(pi, β) = h(pi,pj − pi) : Rd × Rd →
Rd′

, β = {pj − pi}. In this case, point sets are rep-
resented by a dynamic graph and edge features based
on k-nearest neighbors are calculated. Since point sets
are inherently unordered, a function which is invari-
ant to permutation is necessary to pool point features
into a feature vector. Here, the Maxpooling operation
above, g, is capable of removing the permutation from
point clouds. Also, instead of Maxpooling, [24] used
NetVlad [1] as a pooling mechanism to remove permu-
tation from point cloud features.

Finally, via a collection of h(pi, β), corresponding
values of f can be computed to form a vector f ∈ Rm

for Maxpooling pooling, and f ∈ Rm×c for NetVlad
pooling, where c is the number of centers in NetVlad,
which represents a feature vector of an input point set.
The obtained feature vector removes permutation from
the point cloud. In the next step, a few fully-connected
layers are applied to the feature vector f in order to
transform the features into a more discriminative rep-
resentation, f ′ = φ(f), where φ : Rm → Rd represents
three fc layers with a nonlinear relu activation. This
function maps the point cloud feature vector f to a
semantic word vector embedding space by calculating
f ′. Then, semantic embedding vectors Es, from all
seen classes, are inserted into the network by multiply-
ing with the feature vector f ′ from the fully connected
layers, f ′′ = Es.f ′, where Es ∈ RS×d, and f ′′ ∈ RS .
Finally, the following objective function is minimized
in order to train the proposed method shown in Figure
2:

L = −
S∑

i=1

Y s
i log(yi)) where, yi =

e(E
s.f ′

i)∑S
j=1 e

(Es.f ′
j)

Multiple semantic space fusion: In Figure 2, only
one semantic representation, w2v or glove, is consid-
ered during the training stage. However, it is also
possible to fuse both semantic representations and
consider them a unit semantic vector by concate-
nating the two different semantic embedding space
representations. Therefore, the new semantic vec-
tor is: Es = concat(Esw2v , Esglove), where Esw2v =
{esw2v

: s ∈ Ys}, Esglove =
{
esglove

: s ∈ Ys
}

, and
“concat” denotes the concatenation operator.

Inference: During the training stage, a classifier ps
is trained on seen instances Xs such that it can esti-
mate the probability of a 3D point cloud x belonging
to a certain seen class label s ∈ Ys, denoted ps(s|xs),

where
∑S

s=1 ps(s|xs) = 1. Then, given ps, we apply a
method similar to [15], to transfer those probabilities
obtained from training samples to the testing labels.
Suppose ŝ(x, t) is the tth most likely label for a point
cloud x:

ŝ(x, t) = arg max
s∈Y s

ps(s|xs) (1)

So, ps(ŝ(x, t)|x) is the tth largest value in
{ps(s|x); s ∈ Y s}. Based on the top T predictions of
ps, the proposed model calculates an embedding se-
mantic feature vector z(x) for an input x,

z(x) =
1

K

T∑
t=1

ps(ŝ(x, t)|x).est (2)

where T is a parameter in order to control the maxi-
mum number of embedding vectors that contributes in

the inference stage, and K =
√∑T

t=1(ps(ŝ(x, t)|x))2

is a normalization factor. The significance of using a
subset of seen prediction values is to describe unseen
classes via only closely related seen classes. Based on
the predicted embedding of x in the semantic space,
z(x), zero-shot classification is applied to find the class
which is nearest to the obtained embedding vectors.
The top prediction for a point cloud x from the test
set, denoted ŷ(x, 1), is defined by using the cosine sim-
ilarity to rank the embedding vectors,

ŷ(x, 1) = arg max
u∈Y u

cos(z(x), Eu) (3)

An alternative approach to adapt ZSL: In
this paper, we modified the PointNet [17] and Edge-
Conv [28] architectures such that they can consider
word vectors during training. This modification helps
aligning the point cloud object features to their corre-
sponding semantic space. The output of this architec-
ture still provides a prediction value, ps(s|xs) for each
seen class which we use during inference in Eq. 1. How-
ever, as the original PointNet [17] and EdgeConv [28]
architectures can also provide such seen prediction val-
ues, one can consider the original framework instead of
our modified architecture. Then, the inference follows
the same process as mentioned above. We name this al-
ternative process of prediction the basic approach. In

airplane

benchbookshelf

bottle

bowl

car

cone

cup curtain
door

flower pot

glass box

guitar

keyboard

lamp

laptop

mantel

person

piano

plant

radio

range hood

sink

stairs

stool
tent

tv stand

vase

wardrobe

xbox

bathtub

bed
chair

deskdresser

monitor

night stand

sofa
table

toilet
ant bird

crab

dinosaur

dolphin
fish

quadruped

hand

octopus

pliers

snake

spectacle

spider

teddy

Figure 3. 2D tSNE [25] visualization of word2vec vec-
tors [13]. Red, green and blue texts represent seen Mod-
elNet40 [29], unseen ModelNet10 [29] and unseen McGill
[21] classes respectively.

the experiments, we find that as this basic approach
does not consider word vectors during training, it does
not perform well predicting unseen classes (See Table
1). However, being free from the noise inside the word
vectors, it performs very well recognizing objects of
seen classes (See Table 2).

4 Experiment

4.1 Setup

Dataset: We perform our experiments on three
well-known 3D datasets, ModelNet40/Modelnet10 [29],
McGill [21], and SHREC2015 [12]. The ModelNet40
contains 12, 311 CAD models from 40 different classes,
and Modelnet10, which is a subset of ModelNet40, con-
sists of 4899 CAD models from 10 different classes. The
Modelnet40 contains 9, 843 training samples and 2, 468
testing samples, and ModelNet10 includes 3991 train-
ing samples and 908 testing samples. Moreover, the
McGill dataset consists of 456 CAD models of 19 differ-
ent objects. The SHREC2015 dataset consists of 1200
3D watertight triangle meshes from 50 different classes,
where each class contains 24 objects with distinct pos-
tures. Each shape in the dataset has approximately
10,000 vertices. Note that, we randomly sample all
models to 1, 024 points from the mesh faces and nor-
malize them to a unit sphere. We use the (x, y, z) co-
ordinates of the sampled points for all the experiments
in this work.
Seen/Unseen split: We are proposing a suitable
and standard split of seen and unseen classes similar
to the 2D version of the corresponding ZSL problem.
In the 2D case, experiments using established meth-
ods of ZSL are performed on a single, well defined,
split of seen/unseen classes from datasets like Animals
with Attributes (AwA) [7], and Caltech-UCSD Birds
(CUB) [26]. The idea of using a single split is bet-
ter than using several random splits as it establishes
a common testbed for evaluating other methods. In
a real life setting, unseen 3D point cloud objects are
likely obtained from an advanced 3D-depth camera or
laser scanner. Here, however, we attempt to simulate

Indivisual class performance

to
ile

t
de

sk

m
on

ito
r

ch
air

nig
ht

 st
an

d be
d

ba
th

tu
b

dr
es

se
r

ta
ble so

fa
0

20

40

60

80

100

T
op

1
sc

or
e

Pointnet + Maxpooling
Pointnet + NetVlad

Figure 4. Per-
class
recogni-
tion rate
of unseen
Model-
Net10
classes.

that scenario by using 3D point cloud objects from a
different dataset not included during training. There-
fore, we propose to use 30 classes from ModelNet40
as seen and other, disjoint classes, from ModelNet10,
McGill and SHREC2015 as unseen. In ModelNet10,
which has 10 classes, only testing samples based on
the splitting protocol mentioned above, are considered
as the unseen set. In McGill [21], 5 classes, which also
appear in the seen set, are removed, and the remaining
14 categories are selected. Since we follow the pro-
tocol introduced by [27], we only consider their test
set, the last third of the instances, as the unseen in-
stances to enable a fair comparison. Finally, in the
SHREC2015 [12] dataset, those classes that were simi-
lar to the seen classes, and those classes for which there
were no semantic word vector available, were removed.
The remaining 30 of the original 50 classes were cho-
sen as the unseen instances. Moreover, in line with
the protocol used in [31], 25% of instances were chosen
randomly as unseen samples.

Semantic features: We work with unsupervised word
vectors obtained from an unannotated text corpus as
semantic information. We used `2 normalized, 300 di-
mensional word2vec [14] and Glove [16] word vectors.
The 2D tSNE visualization [25] of those vectors is il-
lustrated in Figure 3.

Evaluation: The recognition performance is here
measured by top-1 accuracy. It means the class
with the highest predicted probability must match the
ground truth class to be considered “correct”. Im-
plementation details: We use the Adam optimizer
and a batch size of 16. We also use Relu and Batch
normalization(BN) [5] for each layer. We implemented
the architecture using TensorFlow and executed on an
NVIDIA GTX1080Ti. For PointNet, we employed five
shared mlp layers (64,64,64,128,1024). Also, for Edge-
Conv, which consists of two feature extraction blocks,
the first block used three shared mlp layers (64,64,64)
and the second block consisted of a shared mlp of size
(128). Then, a shared mlp of size 1024 was used to
concatenate all features together. Finally, for aggrega-
tion, we also used either max pooling or NetVlad. In
the case of max pooling, we got a feature vector of size
1024. In the case of NetVlad, the number of cluster
centers was set to 128 and the last mlp layer was set
to size 128, from which we got a feature vector of size
128× 128.

Table 1. Overall Top-1 accuracy on unseen classes. Random accuracy is calculated by 100
of unseen classes

Method
ModelNet10 McGill SHREC2015

basic w2v glove conc basic w2v glove conc basic w2v glove conc
PointNet[17]+ Maxpooling 23.1 27.0 14.8 19.4 14.1 9.8 7.2 11.6 3.1 4.1 3.6 4.2
PointNet[17] + NetVlad[1] 9.1 28.0 20.9 20.5 4.5 10.7 10.7 16.1 3.1 5.2 4.2 6.8

EdgeConv[28] + Maxpooling 21.2 24.4 14.1 16.9 12.3 8.9 9.8 8.0 3.3 6.2 4.7 5.2
EdgeConv[28] + NetVlad[1] 9.4 14.6 12.7 18.5 6.5 9.6 7.8 8.1 3.0 5.2 4.1 4.1

Random 10.0 7.1 3.3

Table 2. Overall Top-1 accuracy on seen classes.
Method basic basic w2v glove

(40) (30) (10) (10)
PointNet[17]+Maxpooling 89.2 89.5 87.4 87.6
PointNet[17]+NetVlad[1] 87.1 87.7 81.2 81.2

EdgeConv[28]+Maxpooling 92.2 92.3 90.7 89.5
EdgeConv[28]+NetVlad[1] 91.2 91.4 86.0 83.8

4.2 Recognition results

Unseen recognition: In this subsection, the top-
1 accuracy performance of four different structures
based on the combinations of feature extraction mod-
ules PointNet and EdgeConv, and the pooling layers
Maxpooling and NetVlad, are evaluated. Moreover,
for each structure, four different experiments, basic,
w2v, glove, and concatenation of w2v and glove, are
conducted. It is important to mention that in the ba-
sic experiments, non semantic word vector embeddings
are used during the training stage. As shown in Ta-
ble 1, the winning architecture for point cloud zero-shot
learning is the combination of PointNet and NetVlad,
which achieves an accuracy of 28.9%, 16.1%, and 6.8%
for the ModelNet10, McGill, and SHREC2015 datasets
respectively. Based on the obtained results, we can
make the following observations: 1) PointNet, in com-
parison to EdgeConv, has the advantage and performs
better on the ZSL task, which can be due to the fact
that the vanilla PointNet version has a simpler struc-
ture and fewer parameters to be learned. However,
the EdgeConv module is better suited to the non-
ZSL, point cloud recognition task than PointNet. 2)
NetVlad works better than Maxpooling. Although
Maxpooling is robust to permutation, it is a greedy
operation which removes much useful information. In
comparison to the Maxpooling layer, NetVlad keeps
more features and, similarly, it ignores permutation in
point cloud data. 3) Zero-shot 3D object recognition
benefits from using a semantic word vector embedding
in all investigated structures in comparison to the basic
model. 4) Concatenation of w2v and glove helped to
improve the performance of the proposed method on
the McGill and SHREC2015 datasets.

Per-class results: In Figure 4, we report individ-
ual class performance of unseen ModelNet10 classes us-
ing PointNet + Maxpooling/NetVlad. Our architec-
ture performs better on ModelNet10 classes (e.g., sofa,
table, dresser, and bathtub) for which there are suffi-

5 10 15 20 25 30
Top score of seen classes

10

15

20

25

30

T
o

p
1

sc
o

re

PointNet+Maxpool
PointNet+NetVlad

Figure 5. The
effect of vary-
ing T , the
number of
embedding
vectors in
Eq. 2.

ciently similar classes in the seen set. However, one can
find that the architecture cannot classify some unseen
classes at all (for example toilet, crab, dinosaur etc).
This is due to the hubness problem in high dimensional
space Zhang et al. [32].

Seen recognition: To investigate the effect of us-
ing semantic feature vectors during the training stage,
in the case of the traditional non-ZSL task, we also
evaluated seen class performance (see Table 2). To
this end, the test set of seen classes of the ModelNet40
splitting protocol are considered. Also, we tested basic
models with 30 and 40 seen classes. However, the per-
formance of the basic model is slightly better than the
models which used semantic word vectors during train-
ing. Reasonably, being obtained in an unsupervised
way, word vectors insert noise in the training which re-
duces the seen recognition rate but helps the unseen
recognition rate.

Parameter Dependency: Eq. 2 allows us to vary
the number of embedding vectors from the seen classes
that contribute in the inference stage. In Figure 5,
we see the result when varying this number from 5
to 30. Note that, in Fig. 3, the ModelNet10 vectors
reside within the distribution of the ModelNet40 vec-
tors . Hence, most seen ModelNet40 vectors contribute
to describing unseen ModelNet10 objects. Therefore,
ModelNet10 performs better with a large number of
seen vectors.

5 Conclusion

Traditional recognition systems have achieved supe-
rior performance on 3D point cloud objects. However,
due to the advancement of 3D depth camera technol-
ogy, obtaining 3D point cloud representations of scenes
has become much more accessible than before. Hence,
we will more than likely encounter many unseen ob-
jects to which our traditional 3D point cloud recogni-
tion gets no training. Therefore, it is time for 3D point
cloud recognition systems to adapt zero-shot settings,

aiming to recognize those unseen objects. To this end,
this paper proposed a new challenge and a useful eval-
uation testbed/protocol for pushing forward with this
new line of investigation. We also modified some es-
tablished 3D point cloud recognition systems to work
in the zero-shot setting in order to report a set of base-
line performance results with respect to this problem.
Overall, we believe that this research has the potential
to motivate numerous further works to create a more
robust 3D point cloud recognition system.

References

[1] R. Arandjelovic, P. Gronát, A. Torii, T. Pajdla, and J. Sivic.
Netvlad: Cnn architecture for weakly supervised place recog-
nition. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 5297–5307,
2016.

[2] C. Chen, B. Yang, S. Song, M. Tian, J. Li, W. Dai, and
L. Fang. Calibrate multiple consumer rgb-d cameras for
low-cost and efficient 3d indoor mapping. Remote Sensing,
10(2), 2018.

[3] B. Demirel, R. Gokberk Cinbis, and N. Ikizler-Cinbis. At-
tributes2classname: A discriminative model for attribute-
based unsupervised zero-shot learning. In ICCV, Oct 2017.

[4] S. Deutsch, S. Kolouri, K. Kim, Y. Owechko, and S. Soatto.
Zero shot learning via multi-scale manifold regularization.
In CVPR, July 2017.

[5] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

[6] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,
P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison,
and A. Fitzgibbon. Kinectfusion: Real-time 3d reconstruc-
tion and interaction using a moving depth camera. In Pro-
ceedings of the 24th Annual ACM Symposium on User In-
terface Software and Technology, UIST ’11, pages 559–568,
New York, NY, USA, 2011. ACM.

[7] C. Lampert, H. Nickisch, and S. Harmeling. Learning to de-
tect unseen object classes by between-class attribute trans-
fer. In CVPR Workshops, pages 951–958, 2009.

[8] C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-
based classification for zero-shot visual object categoriza-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 36(3):453–465, March 2014.

[9] C.-W. Lee, W. Fang, C.-K. Yeh, and Y.-C. Frank Wang.
Multi-label zero-shot learning with structured knowledge
graphs. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

[10] J. Li, B. M. Chen, and G. H. Lee. So-net: Self-organizing
network for point cloud analysis. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 9397–9406, 2018.

[11] Y. Li, D. Wang, H. Hu, Y. Lin, and Y. Zhuang. Zero-shot
recognition using dual visual-semantic mapping paths. In
CVPR, July 2017.

[12] Z. Lian, J. Zhang, S. Choi, H. ElNaghy, J. El-Sana, T. Fu-
ruya, A. Giachetti, R. A. Guler, L. Lai, C. Li, H. Li, F. A.
Limberger, R. Martin, R. U. Nakanishi, A. P. Neto, L. G.
Nonato, R. Ohbuchi, K. Pevzner, D. Pickup, P. Rosin, A. Sharf,
L. Sun, X. Sun, S. Tari, G. Unal, and R. C. Wilson. Non-
rigid 3D Shape Retrieval. In Eurographics Workshop on 3D
Object Retrieval. The Eurographics Association, 2015.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient

estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781, January 2013.

[14] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and phrases
and their compositionality. In NIPS, pages 3111–3119. 2013.

[15] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens,
A. Frome, G. S. Corrado, and J. Dean. Zero-shot learning
by convex combination of semantic embeddings. In ICLR,
2014.

[16] J. Pennington, R. Socher, and C. D. Manning. Glove:
Global vectors for word representation. In EMNLP, pages
1532–1543, 2014.

[17] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep
learning on point sets for 3d classification and segmentation.
Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 1(2):4, 2017.

[18] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++:
Deep hierarchical feature learning on point sets in a met-
ric space. In Advances in Neural Information Processing
Systems, pages 5099–5108, 2017.

[19] S. Rahman, S. Khan, and F. Porikli. A unified approach
for conventional zero-shot, generalized zero-shot, and few-
shot learning. IEEE Transactions on Image Processing,
27(11):5652–5667, Nov 2018.

[20] F. Rosenblatt. Principles of Neurodynamics: Perceptrons
and the Theory of Brain Mechanisms. Spartan Books, Wash-
ington, 1962. it Early work on what would now be referred
to as a “connectionist” model.

[21] K. Siddiqi, J. Zhang, D. Macrini, A. Shokoufandeh, S. Bouix,
and S. Dickinson. Retrieving articulated 3-d models using
medial surfaces. Mach. Vision Appl., 19(4):261–275, May
2008.

[22] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[23] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller.
Multi-view convolutional neural networks for 3d shape recog-
nition. In Proceedings of the IEEE international conference
on computer vision, pages 945–953, 2015.

[24] M. A. Uy and G. H. Lee. Pointnetvlad: Deep point cloud
based retrieval for large-scale place recognition. arXiv preprint
arXiv:1804.03492, 2018.

[25] L. Van Der Maaten. Accelerating t-sne using tree-based al-
gorithms. Journal of machine learning research, 15(1):3221–
3245, 2014.

[26] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Be-
longie. The Caltech-UCSD Birds-200-2011 Dataset. Tech-
nical Report CNS-TR-2011-001, California Institute of Tech-
nology, 2011.

[27] C. Wang, B. Samari, and K. Siddiqi. Local spectral graph
convolution for point set feature learning. arXiv preprint
arXiv:1803.05827, 2018.

[28] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein,
and J. M. Solomon. Dynamic graph cnn for learning on
point clouds. arXiv preprint arXiv:1801.07829, 2018.

[29] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3d shapenets: A deep representation for volumetric
shapes. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1912–1920, 2015.

[30] Y. Xian, Z. Akata, G. Sharma, Q. Nguyen, M. Hein, and
B. Schiele. Latent embeddings for zero-shot classification.
In CVPR, June 2016.

[31] Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao. Spidercnn:
Deep learning on point sets with parameterized convolu-
tional filters. arXiv preprint arXiv:1803.11527, 2018.

[32] L. Zhang, T. Xiang, and S. Gong. Learning a deep embed-
ding model for zero-shot learning. In CVPR, July 2017.

