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Abstract

While the main focus of 3D object recognition is on
small human manipulable objects, we face the problem
of recognizing large-scale objects. These objects have
a huge impact on mobile robot manipulation and nav-
igation tasks, especially if the object is only partially
visible and due to its size is far away from the cam-
era and robot. In our work, we propose a framework
capable of recognition and pose estimation for large-
scale objects. We propose the use of semi-global de-
scriptors for scene segments and model views in com-
bination with up-sampling and segment label merging
techniques. To achieve high accuracy, the initially es-
timated pose is first refined and afterwards verified. A
performance comparison between different model de-
scriptors shows that the chosen semi-global descriptor
gives most promising results. By using simultaneous
reconstruction, segmentation and recognition, we have
built a framework which recognizes large-scale objects
and estimates their 6D poses.

1 Introduction and related work

With an increasing number of mobile robots being
deployed in both factory floors and service environ-
ments, the need for understanding the 3D environment
arises. Object recognition and pose estimation of large-
scale objects are important aspects of 3D environments
since they are often only partially visible in the sensory
system of the mobile robot. Through additional infor-
mation about pose and object classification, semantic
information, e.g. possible directions of movement, can
not only increase the performance of obstacle avoidance
but also support approaching large objects.

The problem of scene exploration using visual sen-
sors is well-known as visual SLAM. The recent ad-
vances in this field allow us to get a dense 3d map of the
environment with millimeter-accuracy. An example for
these SLAM systems is presented in [1]. This system is
supposed to be used with RGB-D, stereo and monoc-
ular cameras. It can estimate the camera trajectory

using ORB and applying a loop-closing technique to
reconstruct the environment. If the camera position is
lost the relocalization based on searching for the corre-
spondences in the bag-of-visual-words database is car-
ried out. Other SLAM systems for RGB-D cameras are
proposed in [2] and [3]. A very promising system that
can reconstruct the environment, calculate the cam-
era trajectory and simultaneously carry out segmen-
tation of the generated 3d point cloud is presented in
[4]. It analyzes the depth images in order to provide
real-time segmentation of the reconstructed 3d map.
The next step is to detect and classify objects as well
as to estimate their 6DOF poses. Therefore 3d sur-
face based methods are suitable and more effective in
our case. They can be divided into following groups:
methods based on using local, semi-global and global
descriptors. Methods of the first group use local de-
scriptors calculated for the single keypoints and their
neighborhood in the 3d point cloud such as NARF [5],
PPF [6], RSD [7], etc. Local methods are preferably
used in cluttered and occluded scenes. The global ap-
proaches such as VFH [8], GRSD [9], ESF [10] etc.
use a histogram that can describe the complete surface
represented by a single point cloud. This can help de-
creasing the computational complexity of the matching
process. Methods based on OUR-CVFH descriptors
matching [11] can be assigned to the group of semi-
global approaches. Such methods combine both advan-
tages of the global and local approaches. Addressing
3D object detection and pose estimation, recent work
utilizes these local handcrafted features when working
with RGB-D input data. C. Tsai et al. present an ap-
proach using CSHOT for enhanced description of the
local features with color information leading to higher
accuracy in the matching state followed with a hough
voting scheme for pose extraction[12]. J. Vidal et. al.
propose a similar approach using a variation of the lo-
cal PPF for matching and and a hough-like voting for
pose estimation.
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2 Recognition and pose estimation frame-
work

In this paper, we propose a framework for simul-
taneous recognition and pose estimation of large-scale
objects. This framework consists of two modules:

• reconstruction and segmentation

• object recognition and pose estimation

that are described in the following sections. The com-
plete object recognition and pose estimation pipeline
of the proposed method is presented in figure 1.

2.1 Reconstruction and Segmentation

The reconstruction and segmentation module is im-
plemented according to the work of Tateno et al. [13].
The method used in this paper combines the point
based fusion method described in [14] and the segmen-
tation method presented in [15]. The reconstruction
method uses depth images and surface normals and is
similar to Kinect Fusion technique proposed in [16].
But instead of creating a voxel-based representation of
the environment the proposed SLAM algorithm uses a
point-based representation that contains normal infor-
mation for local regions (so-called surfel). This leads
to lower memory consumption. After estimating the
camera position the current depth image can be merged
into the global environment model [4]. The segmenta-
tion method is an adapted version of the method de-
scribed in [15] that uses depth images. Each depth
image is transformed into the binary edge map and
the normal edge analysis is carried out. That way the
global segmentation map is calculated during the envi-
ronment reconstruction. From the single depth images
extracted segments are grouped into clusters. Each
cluster gets an unique label. Furthermore some clus-
ters can be merged into one. A scene reconstructed
and segmented using the InSeg method proposed in [4]
is presented in figure 2.

2.2 Object recognition and pose estimation

In this subsection we present our approach to recog-
nition and pose estimation of large-scale objects based
on 3d semi-global pipeline presented in [17].

Instead of matching the complete 3D scene segment
against the full 3D model of the object like [13], our
method is based on matching single viewpoint data
with partial 3D model views, namely descriptors for
classification and point cloud data for pose estimation.
We achieve this by extracting 3D scene segments from
one single depth image and utilizing semi-global de-
scriptors for every model view. Therefore we expect
that most large-scale models will be too big to be cap-
tured with one view. The usage of segment smooth
surfaces describing semi-global descriptors for object

recognition for our often not fully visible large-scale
objects comes from the idea, that describing their sur-
faces leads to correct recognition, even in cases were
only a few of them are visible. Furthermore large scale
objects are rarely seen from close up. That leads to
sparse point clouds which need to be upsampled to
achieve good classification results. Additionally, un-
like [17] we are computing our descriptors only on real
world data and do not use virtual views of 3D CAD
models. Therefore we can extend our database with
views of new models quickly. In contrast to [12] we rely
on point clouds without color information for feature
computation because it is more stable against illumi-
nation changes which typically show up while scanning
large objects in industrial environment. Additionally
the pose estimation step is performed using the com-
puted semi-global feature properties and ICP rather
than using Hough-like voting scheme with local fea-
tures like in [12] and [18].

Object Modeling The object model in our frame-
work is represented by the set of different 3d views
of an object with the calculated semi-global de-
scriptors for each view. These views can be cap-
tured manually or can be generated from CAD
data including a reference. Each view is repre-
sented in the world coordinate system.

Descriptors After the segmentation step, each seg-
mented scene cluster on is matched with the model
views using semi-global descriptors that describe
partial, smooth segments of the point cloud (i.e.
OUR-CVFH, etc.). We discovered that semi-
global descriptors are more suitable for our pur-
poses since the processed scene is segmented and
each point cloud segment has to be classified be-
fore pose estimation. So the matching between
two semi-global descriptors represented by 2d his-
tograms is faster than the matching of many local
ones.

Our approach is based on using OUR-CVFH (Ori-
ented Unique Repeatable Clustered Viewpoint
Feature Histogram) descriptors presented in [19].
This descriptor compensates the disadvantages of
local and global descriptors using semi-global fea-
tures and provides an initial 6DOF pose estima-
tion. In this way, the OUR-CVFH descriptor is
calculated for each model view and stored together
with the SGURF (Semi-global Unique Reference
Frame) - the repeatable reference frame [11]. A
scene segment and its corresponding OUR-CVFH
histogram are shown in figure 3.

Object Recognition After the reconstruction and
segmentation step, each depth map cluster of the
scene gets a unique label and is considered as a
separated point cloud. 3d points that do not cor-
respond to any cluster are discarded.
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Figure 1: Object recognition and pose estimation pipeline

Figure 2: Scene reconstructed and segmented with In-
Seg

Before object classification can be carried out
these extracted clusters must be preprocessed with
the following steps:

1. removing outliers

2. ignoring small clusters: clusters that are in-
terpreted as small using the metric computed
in the threshold computation stage (i.e. min-
imal volume, size of the bounding box, etc.)
are ignored

3. up-sampling only of clusters of far away ob-
jects with MLS: point clouds that represent
far away objects have very small density

After the preprocessing step, an OUR-CVFH his-
togram is calculated for each cluster and matched
with the histogram of every view of every model
in the database using a nearest-neighbor search.
The best match is the model with the smallest eu-
clidean distance between the histograms and the
highest confidence level. This confidence level is
computed by the number of matching histograms
from the same model.

Pose Estimation Rough pose estimation is defined
using SGURFs, which are calculated for the cor-
responding scene cluster and model view. If it is

not possible to calculate the SGURF for a certain
point cloud, the transformation between the cen-
troids of both clouds is used.

The pose refinement is carried out using a normal
based ICP algorithm with a point-to-plane error
metric.

Hypotheses Verification and Classification Check
The hypotheses verification used in our approach
is based on the method proposed in [11]. It
rejects false recognitions by analyzing geometrical
constraints of hypotheses and comparing them
with scene constraints.

After matching the descriptors and estimating the
pose, we obtain one hypothesis for each selected
segment. Depending on the number of unrecog-
nized segments and found correspondences in the
current frame, multiple hypotheses are verified.

Furthermore since we also have complex large ob-
jects in our database, segmentation may fail to
group the depth map pixels correctly. Thus we
check the area around every classified segment for
segments with the same classification for merging.

3 Experimental results

To evaluate our proposed attempt to recognize large-
scale objects for mobile robotics, we collected a dataset
of objects in industrial and business environments. An
extract of the dataset is shown in figure 4. For visu-
alization purposes in this image the point cloud data
from different views has been merged though object
recognition is carried out by single view matching. The
chosen objects are of different dimensions: from small
boxes and stools to big couches and robots. Addition-
ally, the generated models are noisy due to their acqui-
sition with structured light cameras.

Figure 5 shows a reconstructed scene of a busi-
ness environment containing large-scale objects such
as armchairs, tables, office chairs etc. All objects are
placed to represent a realistic working area for mobile
service robots.



(a) Scene segment and
SGURF

(b) OUR-CVFH histogram. The x-axis spans the histogram bins, the y-axis the
histogram values.

Figure 3: Visualization of the semi-global descriptor

Figure 6: Segmented scene with recognized objects

Figure 7: Original scene

Figure 4: Stool, Office Chair, VALERI-System [20]

Figure 5: Reconstructed scene

The segmented scene with all recognized objects and
their coordinate systems in respect to the world coor-
dinate system is shown in figure 6. An extract of the
original scene is shown in figure 7. As we are identify-
ing large-scale items, each object may contain multiple
unique classified labels. When those labels are merged
or deleted during the segmentation phase, their clas-
sification is updated to avoid multiple or invalid clas-
sifications. Additionally, if differently classified labels
are merged reclassification with corresponding models
is performed.

For testing the pipeline performance, a computer
with Intel Core i7 2,4 GHz CPU and 16 Gb RAM was
used. The implementation is running on CPU without
using GPU acceleration. The average execution time is
presented in table 1. To evaluate the approach of using
semi-global descriptors to recognize large-scale objects,
we compare the semi-global descriptor with the global
descriptors ESF (Ensemble of Shape Functions) [10]
and GRSD (Global Radius-based Surface Descriptor).
ESF is capable to deal with partial point clouds due
to its robustness to noise and holes. GRSD on the
other hand is a fast global descriptor that can also use
point clouds with low resolution. Therefore, it could be
useful for navigation through industrial and business
environment in real-time.

Figure 8 shows the performance difference between
OUR-CVFH (with upsampling using MLS), ESF and
GRSD estimation on scene segments over a range of
300 frames. ESF uses a combination of three dif-
ferent shape functions for every point in a voxelized



Figure 8: Descriptor estimation time of OUR-CVFH
with upsampling (blue), ESF (green) and GRSD (red)
in ms

Figure 9: Descriptor estimation time of OUR-CVFH
without upsampling (blue), ESF (green) and GRSD
(red) in ms

InSeg SLAM

Reconstruction And Segmentation 51.77

Object Recognition

Descriptor Matching 2.85

Pose Estimation 19.93

Hypothesis Verification 14.85

Classification Correction 2.66

Table 1: Mean of the measured execution times in ms
over 1000 frames of a recorded scene with a depth map
resolution of 640 × 480.

point cloud to describe the distances, angles and re-
gions. GRSD first estimates labels of the cloud and
classifies them. Then the whole cloud is handled as
a plane, cylinder, edge, rim or sphere and the surface
is described using the relationships between keypoints

and their nearest neighbors. While GRSD provides the
fastest computation with a range from 0.2 to 18 ms, it
does not need a high cloud density because of its in-
ternal use of a voxelization with the radius of 2.5 cm
[9]. ESF also uses a voxel grid approach internally, but
takes up to 14 times the computation time of GRSD.
In comparison, the computation of OUR-CVFH for a
point cloud with a resolution lower than the original
model cloud is computationally intensive due to the
upsampling. The success of the matching process with
OUR-CVFH depends on the similarity of model and
segment resolution. The performance difference of the
OUR-CVFH estimation without upsampling compared
to the computation of ESF and GRSD on scene seg-
ments over a range of 300 frames is shown in figure
9. The computational burden of OUR-CVFH is sig-
nificantly smaller than of upsampling. The maximum
required time in this case is three times the maximum
of GRSD computation. With the possibility to use
four threads to estimate the descriptors of multiple seg-
ments simultaneously, the maximum time could be de-
creased by another 30 percent. Descriptor estimation
times for the keyframes are presented in table 2.

In our large scale objects dataset tests we achieved
at best a true positive recognition rate of 83% in the
scene for OUR-CVFH. By comparison, using the global
descriptor ESF only 66% were found, while GRSD,
having by far the smallest computational burden, pro-
vided even less recognitions. Over longer distances the
resolution of the cloud decreases, reducing the recog-
nition rate of OUR-CVFH. To counter this reduction,
MLS increases the amount of points in these clusters
and leads to better results. The down-side though is
prevention of fast frame processing. In contrast GRSD
provides fast recognition results independent of the
cloud resolution.

4 CONCLUSIONS AND FUTURE WORK

The experimental results show that the proposed
framework is able to recognize large objects and es-
timate their pose. We show that the combination of
OUR-CVFH descriptors is most suitable for recogniz-
ing large-scale objects. To be able to perform promis-
ing 3D obstacle avoidance, the objects, in addition,
have to be detected as early as possible. The intro-
duction of up-sampling for sparse segments allows us
to recognize objects which are further away.

Future work includes performance tests of the frame-
work on a mobile platform moving in a real environ-
ment. Especially in industrial environments, large-
scale objects can be harmful to the robot if not the full
knowledge is used to avoid or approach these objects.
Based on the performance and upcoming scenarios, one
could imagine new motion planner which can deal with
semantic information of objects.
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Frame OUR-CVFH OUR-CVFH ESF GRSD
(upsampling)

25 56,51 1,98 235,62 0,93
50 230,26 7,99 85,98 2,61
75 79,49 37,52 109,22 2,28
100 357,96 32,51 95,99 8,81
125 514,39 52,91 77,01 7,76
150 422,63 38,27 77,97 2,01
175 640,49 5,96 50,46 4,95
200 39,04 12,58 20,27 2,97
225 29,93 25,51 55,87 3,68
250 73,62 7,67 56,57 1,77

Table 2: Descriptor estimation times at specific frames
on a recorded scene with large scale objects in ms.
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