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Abstract

Stereo matching is an operation that calculates a
dense set of correspondences from a pair of images
engineered to conform to canonical epipolar geometry.
Stereo matching is a key component in many 3D re-
construction systems, thus it is a heavily studied area
in the field of computer vision. Stereo matching, in the
general case, is a difficult problem that remains un-
solved to a satisfactory level for most scientists in the
field. However, due to the large amount of attention
given to this problem, there exists many algorithms,
each with their own advantages and problems. This
work explores the notion of combining the outputs of
two well known stereo matching algorithms (symmetric
dynamic programming stereo and patch match stereo)
using a statistical framework, with the hope that the
strategy will preserve the advantages of both algorithms
while overcoming some of the weaknesses. Experiments
were performed both on images from the Middlebury
data set and ones captured for this study using a stereo
camera. The results indicate that the proposed strategy
is promising.

1 Introduction

Stereo matching, for 3D reconstruction, has been an
important problem in the Computer Vision community
dating back to 1976 [1]. While several solutions per-
form extremely well in limited well-defined contexts,
it is still considered to be an unsolved problem in the
general case. Websites like Middlebury Stereo [2] and
KITTI [3] are just some of the resources available dedi-
cated to finding a solution for the general stereo match-
ing problem. Few other problems in the field of com-
puter vision have received the same attention.

Over the years, a huge variety of approaches have
been proposed from simple block matching [4] to so-
phisticated Markov Random Field (MRF) formula-
tions [5]. Modern stereo matching algorithms are now
incorporating the latest advances in machine learn-
ing [6]. Key problems in stereo matching include the
lighting artifacts (shadows for example), the reflectance
properties of materials (transparent for example), oc-
clusions (essentially monocular pixels in the scene) and
correctly interpreting homogeneous surfaces (many dif-
ferent surface profiles appear “correct” as per the image
data).

A feature of the collective stereo algorithms, is that
they tend to have different strengths and weaknesses.

This leads to the notion of guided stereo, a strategy
that attempts to combine the strengths of two stereo
matching algorithms by improving the output of a first
algorithm with a second algorithm. This work builds
on work by Nguyen et al [7], who used traditional Sum
of Absolute Differences (SAD) block matching to guide
a Symmetric Dynamic Stereo algorithm [8] (SDPS).
Guidance was achieved by adding a bias to the data
term of the second algorithm, causing it to favor the
results of the first algorithm unless it found a better
result.

The novelty of this work is that it proposes a new
strategy of guidance, based on statistical distributions
of disparities in the local neighborhood, where it is pos-
tulated that the proposed algorithm is less likely to by
influenced by outliers than the approach of Nguyen
et al. Also in this work, it was decided to focus
on blending Symmetric Dynamic Programming Stereo
(SDPS) [8] and PatchMatch Stereo [9]. The reason
that these two algorithms were chosen, is that these
two algorithms have complementary advantages: SDPS
has a global optimization that PatchMatch lacks, while
PatchMatch eliminates the tell-tale streaking artifacts
associated with the 1-D nature of SDPS and gives
SDPS sub-pixel disparity approximation.

In the next Section 2, a literature review is pre-
sented. In Section 3, the reconstruction pipe-line and
the guided patch-match algorithm is proposed. In Sec-
tion 4, the experimental methodology is outlined. Fi-
nally experimental results are presented in Section 5
and conclusion are in Section 6.

2 Literature Review

Stereo matching finds a dense set of corresponding
pixels in the common field of view between two images.
If both images have been rectified to match canonical
epipolar geometry, then corresponding pixels are al-
ways on the same row. One advantage of having corre-
spondences on the same row, is that correspondences
may be stored as an offset map, known as a disparity
map.

A typical strategy for finding correspondences is to
find pixels with a similar color or intensity. Unfortu-
nately, a single pixel based search is typically too basic
for stereo matching, therefore a matching cost func-
tion typically relies on matching small local windows
across left and righ images. Typical match costs can be
based on the Sum of Absolute Differences (SAD) [10],
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Sum of Squared Differences [11] and Normalised Cross
Correlation (NCC) [12] to name a few.

Illumination differences between left and right stereo
images, however, may still be a problem, and cost func-
tions relying on mutual information [13], the census
transform [14] and image gradients [15] have shown
some invariance to illumination differences between
stereo pairs.

Window-based matching also tends to suffer from
fattening artifacts, since a window searching typically
falsely assumes that all pixels in the sliding window
have the same disparity. One strategy for overcoming
this is to use a color weight to filter out elements that
have a different color with respect to the central point
of interest. This strategy is known as Adaptive Support
Weights [16].

Stereo matching algorithms can operate fully as a
correspondence search based on local search windows,
however, these algorithms struggle with texture-less re-
gions with large ambiguity in matching and occlusions
(pixels that are only visible in one of the stereo im-
ages, typically found close to edges). A typical ap-
proach in dealing with this uncertainty is to impose
the heuristic that texture-less regions and monocular
pixels are smooth, that is to say, that disparity values
are nomrally similar to their neighbors. The smooth-
ness constraint is typically enforced with a smoothing
term added to the cost function. As smoothness of-
ten needs to be propagated over some distance within
images, these smoothing costs tend to be globally op-
timized. Unfortunately, in 2-D, this becomes an NP-
hard problem. It is solvable in 1-D, and algorithms
such as SDPS [8] and 1-D Belief Propagation [17] take
advantage of this.

There are several algorithms that attempt to ap-
proximate a full 2-D global optimized stereo matching
solution. These include Graph-Cuts Stereo [5], Semi-
Global Matching [18] and Belief Propagation [19]. Un-
fortunately, most of these algorithms are quite slow
and thus researchers have been looking for algorithms
that enforce global constraints in a quicker way. Effi-
cient large-scale stereo (ELAS) [20] does this by fitting
planes to a sparse network of reliable correspondences
and use this to guide a local search for correspondences.
Another popular approach is to use color segmenta-
tion [21].

The current top stereo matching algorithms, accord-
ing to the Middlebury stereo website [2], are using ma-
chine learning to encode many of the complexities in
stereo matching problems. A convolutional neural net-
work based image patch matching of Zbontar et al. [6]
is an example of such work.

This work moves away from the traditional path of
stereo matching algorithm research, in that, instead
of proposing a completely new technique, it looks at
what already exists and attempts to use the knowledge
acquired from previous research to engineer a new su-

perior algorithm. As mentioned in the introduction,
this work attempts to continue on work published by
Nguyen et al [7], which investigates the notion of guided
stereo matching.

3 Proposed Algorithm

Figure 1. Guided Patchmatch Stereo: (Left)
A color frame from the Middlebury dataset.
(Middle Left) A disparity map generated from
SDPS. (Middle Right) The result from Patch-
Match Stereo. (Right) The Guided Patch match
result.

Given a left rectified image Ir and a right rectified
image I ′r, along with a proposed solution disparity map
Dguide, the goal of the proposed algorithm is to find dis-
parity map D, which is potentially an improved version
of Dguide.

3.0.1 Parameterisation

Before refining the disparity map Dguide, it is nec-
essary to define how to parametrise the problem. The
authors of Patch Match Stereo parameterised their so-
lutions space directly from the 3-D plane definition
di = aiu+ biv + ci where (ai, bi, ci) are the plane gra-
dient parameters for pixel i, p = [u, v]T represents the
2-D coordinate within the plane and di is the disparity
value assigned to pixel i. This plane equation encodes
the position and tilt of the search window, allowing
it to be positioned and warped accordingly during a
search for better parameters. In this proposed imple-
mentation, it was decided to parameterise the problem
more directly for the sake of simplicity. The proposed
parameterisation takes the form of the parameter vec-
tor Si = [di, θi, φi], where di is the disparity value of
pixel i and θI and φi are the angle tilts in the X- and
Y-directions of the local search window applied as fol-
lows:

Given local search window centered on pixel pi =
[ui, vi]

T with offsets j and k, then the value at I(ui +
j, vi+k) is compared with the value in the correspond-
ing window I ′(ui−di+jcos(θi), vi+kcos(φi)). Bilinear
interpolation is used to deal with non-integer values. It
was found that both parameterisations produced simi-
lar results.

3.0.2 Cost Function

The cost function here generally follows the one pro-
posed for PatchMatch Stereo as:



Ecost = C(pi,Si, I, I
′) =

∑b
j=−b

∑b
k=−bW (pi, j, k, I)ρ(pi, j, k,Si, I, I

′)

(1)
where the function W determines the support weights
as:

W (pi, j, k, I) = e−
‖I(ui,vi)−I(ui+j,vi+k)‖

γ (2)

and ρ determines the actual differences per pixel as:

ρ(pi, j, k,Si, I, I
′) = (1− α) ·min(

∥∥Ip − I ′q∥∥ , τcol) + α ·min(
∥∥∇Ip −∇I ′q∥∥ , τgrad)

(3)
where α is a “blend” parameter {0 6 α 6 1}, Ip =
I(ui + j, vi + k) and Iq = I ′(ui − d + jcos(θ1), vi +
kcos(φ2)), ∇Ip = ∇I(ui+j, vi+k) where∇I is the gra-
dient image of I and ∇I ′q = ∇I ′(ui−di+ jcos(θi), vi+
kcos(φi)), ∇Ip = ∇I(ui + j, vi + k) where ∇I ′ is the
gradient image of I ′. The gradient images where pro-
duced by combining X-gradient images and Y-gradient
images generated by the Sobel [22] operator.

3.0.3 Guided Cost Function

The cost function C, defined above, provides a
means to determine the fit parameters Si have with
the corresponding pair at point pi in I and [ui−d, vi]T
in I ′. If the value of C is small then the probability of a
good match of parameters is high and vice-versa. The
probability of a good match Pr(M), given C (assuming
a Gaussian Distribution) is proportional to:

Pr(M |C) ∝ e−
‖C‖
γ (4)

where γ is a guess at the variance of the disparity in
the local window.

Another aspect considered is the information that
disparity map Dguide gives about the likely disparity
di for pixel pi. Patch Match Stereo makes the assump-
tion that disparity values in a small local region are
likely to be similar. Given the assumption that noise
in disparity SDPS disparity maps can be modelled as
a Gaussian distribution, then for location pi in Dguide,
given the radius r, it is relatively straightforward to
determine the mean µr and standard deviations σr of
the disparity values that surround pi. The probability
of a good match Pr(M |r) given the radius r should be
proportional to:

Pr(M |r) ∝ e−
‖di−µr‖

2σ2 (5)

The match probability of Eqn. 4 and the distribution
probably of Eqn. 5 can be combined into a single cost
function as follows:

E(pi,Si, I, I
′) = βC(pi,Si, I, I

′)− log
[
exp

(
−‖di−µr‖

2σ2
r

)]
(6)

where β controls the weighting difference between the
first and second terms. It was decided to call this cost
function the Guided Cost Function, since it takes into
account the match score, but is also guided by the dis-
parity distributions in the guiding disparity map. It
should be noted that some inspiration for this formu-
lation comes work published by Geiger et al [20].

3.0.4 Refinement

The Guided Patchmatch algorithm builds two pa-
rameter maps, S for I and S′ for I ′. Each pixel pi

corresponds to the triplet Si = [di, θi, φi]. Each Si in S
is initialised as Si = [Dguide(pi), 0, 0] where Dguide is
the guiding disparity map. Each S′i in S′ is initialised
as Si = [Dguide([ui −Dguide(pi, vi)]

T ), 0, 0]. Optimisa-
tion of the parameters follows the normal Patchmatch
Stereo operations of Refinement, Spatial Propogation
and View Propagation. The reader is refered to the
PathMatch Stereo paper [9] for more details on these
operations. It should be noted however that during the
operation the following range limits are imposed:

• {di | di − 3σr ≤ di ≤ di + 3σr}, since disparity
values are expected to be within 3 standard de-
viations of the local distribution by the assumed
Gaussian distribution.

• {θi | −π2 < θi <
π
2 } to avoid the search window

flipping.

• {φi | −π2 < φi <
π
2 } to avoid the search window

flipping.

4 Experimental Methodology

4.1 Algorithms

A basis of comparison is required and therefore the
following state-of-the-art stereo matching algorithms
were used as a benchmark.

• Efficient Large-Scale Stereo [20] (ELAS): The
implementation provided by the author was used.

• Block Matching Stereo [23] (BM): The highly
efficient OpenCV version was used.

• Semi-global Block Matching [18] (SGBM):
OpenCV’s version was used here too.

• Symmetrical Dynamic Programming [8]
(SDPS): The IVS Lab version was used.

• Patch Match Stereo [9] (PMS): The IVS lab’s
CUDA version was used.



Figure 3. Stereo Camera: The FujiFilm
FinePix REAL 3D W3

4.2 Middlebury Experiments

Experiments were performed against a variety of
stereo pairs chosen from the Middlebury [2]. The
goal of these experiments was to determine how well
the proposed algorithm performs against other state-
of-the-art algorithms. The images of the Middlebury
dataset tend to be rather idealistic, with perfect rectifi-
cation and illumination, therefore it provides a perfect
test basis to assess optimal performance. The Mid-
dlebury database also contains “ground truth” images
for evaluation. Accuracy was assessed by directly find-
ing the variance between the disparity values of the
ground truth and that of the proposed algorithm. In
cases where the tested stereo matching algorithm was
unable to compute a match, values were excluded from
the average error. A secondary coverage score is pro-
vided to indicate the percentage of pixels skipped by
the algorithm.

4.3 Orbbec Astra Experiments

Figure 2. Astra Orbbec: An infra-red active
depth sensor camera

In order to assess the performance of the algorithm
in indoor scenes, experiments were performed using a
Orbbec Astra camera (Fig. 2). The Orbbec Astra has
an RGB camera and an infra-red based active depth
sensor and projector which are produce depth maps of
indoor scenes. Our tests determined the depth sensor
accuracy to be ±3 mm at a range of 1 m.

The idea behind the Orbbec Astra experiments was
to compare the 3-D reconstructions produced from the
disparity maps of the proposed algorithm to the re-
constructions produced by the Orbbec Astra (ground-
truth).

The level of consistency between the point cloud of

the Orbbec Astra and the proposed algorithm was mea-
sured using the Hausdorff distance metric [24].

4.4 Outdoor Experiments

In order to assess performance in real outdoor
scenes, a database was acquired using a calibrated W3
camera (see Fig. 3). Images were processed by a 3-D
pipeline using the proposed algorithm.

5 Results

5.1 Middlebury

Table 1, provides the results of Efficient Large-
Scale Stereo [20] (ELAS), Block Matching Stereo [23]
(BM), Semi-global Block Matching [18] (SGBM),
Patch Match Stereo [9] (PMS), Symmetrical Dynamic
Programming [8] (SDPS) and the proposed algorithm
Guided Block Patching Stereo (GPMS) to stereo pairs
from Middlebury. Thumbnails of the images used are
shown in Fig. 4. The image numbers (the first column
“No” of Table 1) corresponds with Fig. 4, with image
0 at the top-left, and the remaining images ordered
column-by-column and then row-by-row there after.
Each stereo matching algorithm has an associated col-
umn “Err”indicating the average disparity error from
the ground truth in pixels. The various algorithms also
marked pixels as “not found” and these were excluded
from the average disparity error. The column marked
“Cov” indicates percentage coverage as the ratio be-
tween the pixels that were found to have valid dispar-
ity values with respect to the total pixel count of the
image.

Figure 4. Middlebury Database: Thumbnail
images of the left images of the stereo pairs from
Middlebury database used in this work.

From Table 1 it is clear the ELAS performs the
best on the Middlebury images. However, the pro-
posed algorithm is a close second and tends to do better
on the coverage metric on average. It is also notable
that GPMS does generally outperform SDPS and PMS
which are the two algorithms that it is composed of.



5.2 Orbbec Astra

Experiments were conducted with four scenes with
the Orbbec Astra to capture images and ground truth
depth map. The images featured a pillow covered by
a tracksuit top, a shoe, a vacuum cleaner and bed-
room (see Fig. 4). The vacuum cleaning and the bed-
room scenes were deemed particular difficult due to
the presence of homogeneous surfaces. The top algo-
rithms from the Middlebury experiments were chosen
for these experiments (Efficient Large-Scale Stereo [20]
(ELAS), Semi-global Block Matching [18] (SGBM) and
the proposed algorithm Guided Block Patching Stereo
(GPMS)).

Figure 5. Orbbec Astra Images: (Left) The
color frame from the Orbbec Astra. (Middle Left)
The depth map from the Orbbec Astra. (Mid-
dle Middle) The ELAS disparity map. (Middle
Right) The SGBM disparity map. (Right) The
GPMS disparity map. The scale difference be-
tween the disparity map and the depth map is
due to the scaling after calibration.

Table 1. Disparity Errors (Pixels) and Coverage
(%) of Stereo Matching Algorithms applied to
Middlebury Stereo Pairs

ELAS BM SGBM PMS SDPS GPMS

No Err Cov Err Cov Err Cov Err Cov Err Cov Err Cov

0 2.1 0.77 2.6 0.62 3.8 0.72 3.0 0.83 4.7 0.97 2.9 0.81
1 3.0 0.79 3.1 0.60 4.2 0.73 3.8 0.84 4.2 0.98 3.4 0.83
2 1.3 0.77 3.2 0.57 4.8 0.66 3.0 0.80 3.2 0.97 2.2 0.74
3 3.6 0.66 6.7 0.53 7.8 0.63 6.0 0.67 9.7 1.00 6.3 0.51
4 1.2 0.83 1.1 0.67 2.9 0.74 1.2 0.88 2.6 1.00 1.3 0.80
5 1.3 0.76 1.1 0.60 2.1 0.67 1.8 0.78 11.4 0.94 2.7 0.65
6 1.6 0.78 2.2 0.60 3.0 0.69 2.5 0.83 7.2 0.99 2.0 0.70
7 3.0 0.69 3.7 0.45 6.8 0.51 6.8 0.71 3.3 0.98 2.3 0.63
8 0.9 0.80 0.8 0.64 2.3 0.71 1.2 0.84 4.0 0.99 1.1 0.57
9 1.5 0.81 1.8 0.62 2.7 0.72 2.2 0.84 3.0 0.99 2.0 0.73
10 4.1 0.73 4.6 0.49 11.7 0.56 6.3 0.71 8.0 0.97 4.8 0.61
11 2.7 0.64 6.2 0.51 4.4 0.73 4.2 0.74 7.8 1.00 4.1 0.71
12 2.0 0.79 2.0 0.61 3.9 0.71 3.3 0.81 4.1 0.99 3.5 0.72
13 2.5 0.75 5.2 0.49 6.1 0.61 4.4 0.78 6.2 0.99 3.7 0.61
14 1.0 0.81 1.2 0.67 1.6 0.73 1.4 0.84 3.3 0.95 1.4 0.78
15 1.3 0.80 1.8 0.61 6.1 0.62 1.8 0.82 14.0 0.98 3.5 0.85

Table 2. Hausdorff distance (in millimeters) be-
tween Orbbec Astra point clouds and those gen-
erated from Reconstruction Pipeline

Image ELAS SGBM GPMS

1 7.1 10.67 6.9
2 6.2 3.9 4.6
3 31.4 25.9 25.9
4 110.1 75.5 48.3

Table 2 shows the average Hausdorff distance (in
mm) found between the point cloud generated between
the Orbbec Astra ground truth and models made using
the proposed pipeline with various stereo matching al-
gorithms. The GPMS algorithm frequently produced
the most accurate results. The distance between the
scene and the camera was approximately 1 meter.

5.3 W3 Experiments

The final set of experiments performed used the pro-
posed stereo reconstruction pipeline along with GPMS
to generate models. Some of these models are shown
in Fig. 6

Figure 6. Reconstructed scenes: (Left) Orig-
inal left frame on stereo pair. (Right) The 3-D
reconstruction.

6 Conclusions

In this work a Guided Patch Match Stereo (GPMS)
algorithm was proposed. The algorithm initially gen-
erated a base disparity map using the SDPS algorithm.
This result was then refined using local neighborhood
statistic from the base disparity map and a random
search proposed by the patchmap stereo algorithm to
refine the results.

The resultant disparity map was a noticeable im-
provement on the SDPS algorithm, resultant in much
smoother looking disparity maps without the streak ar-
tifacts caused by the one dimensional behavior of the
SDPS algorithm. The proposed algorithm was a regu-
lar best performing algorithm on both the Middlebury
images and the indoor experiments with the Orbbec
Astra. The algorithm was also used to produce reason-
ably good models from binocular stereo images from
outdoor scenes.



The algorithm is still limited, however from typical
issues that plague stereo matching algorithms, such as
the inability to perform well on featureless surfaces.
However since the algorithm is based upon well known
algorithms, this work really represents a technique that
may be use to engineer good stereo matching solu-
tions from existing algorithms by changing together
algorithms that have desirable characteristics for the
problems at hand.

In future work, more comprehensive testing needs to
be done and experimentation with other combinations
of algorithms needs to be tried to prove the scalability
of the approach.
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