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Abstract

Microscopic images are quite helpful for us to ob-
serve the details of cells because of its high resolu-
tion. Furthermore it can benefit biologists and doctors
to view the cell structure from any aspect by using a
serial images to generate 3D cell structure. However
each cell slice is placed at the microscopy respectively,
which will bring in the arbitrary rotation and trans-
lation among the serial slices. What’s more, the sec-
tioning process will destroy the cell structure such as
tearing or warping. Therefore we must register the se-
rial slices before rendering the volume data in 3D. In
this paper we propose a robust registration algorithm
based on an improved 3D Hilbert scan search. Besides
we put forward a simple but effective method to remove
false matching in consecutive images. Finally we cor-
rect the local deformation based on optical-flow theory
and adopt multi-resolution method. Our algorithm is
tested on a serial microscopy kidney cell images, and
the experimental results show how accurate and robust
of our method is.

1 Introduction

Regarding this topic, many researchers have been
providing their contributions. The frequently used
methods can be divided into two categories: rigid regis-
tration and non-rigid registration. The former method
only helps in correcting the orientation and transla-
tion of the serial slices while the latter one not merely
corrects the global transformation but also local de-
formation. In 2001, Alexis Roche[1] pointed out using
block matching to extract the corresponding patch and
minimize the summation of the distance between the
central points of those patches. However, the block
matching always brings in errors in microscopic cell
images. In 2006, Pavel Koshevoy[2] proposed to ex-
tract SIFT feature and use RANSAC to estimate the
transformation parameters. In 2006, Mosaliganti [3]
proposed to use PCA alignment to rectify the orienta-
tion, and then adopted the maximization of mutual in-
formation to to obtain the optimal rigid transformation
parameters based on a two-stage optimizer. Arganda-
Carreras[4] proposed to use multiple algorithms to reg-
ister the serial images. Firstly, correct the rigid trans-
formation by minimizing MSE. Then extract the con-
tour and grouped them to refine the rigid transfor-
mation parameters. Last, correct the local distortion
by phase correlation method. However, this method
is complex and time-consuming. Recently Ching-Wei
Wang[5] proposed a coarse-to-fine method to align se-
rial microscopic images. The author firstly correct the
rigid transformation by minimizing the distance sum-
mation of corresponding SIFT points. And then the

displacement field is refined by the bi-directional elas-
tic B-spline model[6]. However, we tested this algo-
rithm can not work well on kidney cell. There are
many popular and conventional methods as well, such
as maximizing mutual information or mean-square er-
ror based on gradient descent optimizer or conjugate
descent optimizer, but the optimizers result in local
optima to some degrees.

This paper is organized as follows. At first, we pro-
pose our overall framework in section 2. Then false
matching removal method and 3D Hilbert scan search
are presented in section 3 and 4. Section 5 is about
experimental results.

2 Overview of our method

The overall framework of our proposed scheme is il-
lustrated in Figure 1. In the rigid global registration
stage, we apply 3D Hilbert scan to correct the rotation
and translation of two consecutive image pairs. Firstly
we extract the spectral-SIFT feature points[7](can be
treated as landmarks) and match feature points in two
images. Then the false matching feature points will be
eliminated by our proposed method. In the next step,
we align the matching feature points to obtain an esti-
mated transformation parameters. Then we construct
the 3D transformation parameters space around the es-
timated transformation parameters. Subsequently we
maximize the mutual information to obtain the trans-
formation parameters by 3D Hilbert scan search. In
the local non-rigid stage, we correct the local deforma-
tion based on optical-flow theory[10].

Figure 1. Registration framework to register two
consecutive image pairs
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Assume (xr, yr) denotes the coordinate of one pixel
in the reference image Ir, while (xt, yt) is the coordi-
nate of the corresponding pixel in target image It. The
global rigid transformation of consecutive image pairs
can be modeled by using three parameters (rotation
angle θ, horizontal translation ∆x, and vertical trans-
lation ∆y). Hence the global rigid registration model
can be written as(

xr
yr
1

)
=

(
cosθ −sinθ ∆x
sinθ cosθ ∆y

0 0 1

)(
xt
yt
1

)
(1)

Therefore, The global rigid registration can be repre-
sented as multi-parameter optimization problem. We
adopt and modify 3D Hilbert scan search and this will
be explained in section 4.

3 False matching removal

As mentioned in overview, correct matching fea-
ture points are necessary prior the 3D Hilbert scan.
Lowe[9] suggested to eliminate false matching feature
points based on the ratio of Euclidean distance from
the query descriptor to its closest match and second
closest match in descriptor space. However some er-
ror matches are still reminded. The other frequently
used method is RANSAC. Randomly selecting several
matching feature points to compute the transformation
matrix for several times. The obtained transformation
matrix will be able to satisfy most matching feature
points. Then the leftover points are false matching
feature points. Nevertheless, this method is time con-
suming.

In our method, we adopt spectral-SIFT points[7]. It
is because spectral-SIFT is based on continuous scale
space, it can obtain more keypoints compared with dis-
crete scale space. The extracted Spectral-SIFT feature
points are shown in Figure 2(b) compared with SIFT
feature points shown in Figure 2(a). The number of
feature points in (a) is more than (b).

(a) (b)
Figure 2. (a) SIFT feature points. (b) Spectral-SIFT
feature points.

At every keypoint, 128-Dimension feature descriptor
is computed. Keypoints in two images can be matched
to each other based on descriptors. We assume the
consecutive image only suffered from minor change in
global scale, so that the false matched feature points
can be deleted by the ratio defined in equation 2. Let
feature points set of reference image and target im-
age are {p1, p2, .., pn} and {q1, q2, .., qn} respectively.
pi and qi are matching feature points. We eliminate
those false matching pairs by calculating the ratio of
the distances between two matching pairs as follow

ratio =
distance(pi, pj)

distance(qi, qj)
(2)

Table 1. False matching removal comparison between
proposed method and RANSAC. False and true mean
average number of false matching and true matching
respectively.

Method False True Time(s)
Proposed method 1.2 217.5 0.125

RANSAC 3.7 150.8 0.420

Table 2. Experimental result about estimated trans-
formation parameters. Here FMR means false match
removal.

Method Horizontal Vertical RotationAccuracy
With FMR 2.0 5.0 0.0 0.7980

Without FMR 0.0 5.0 0.0 0.7820

In our experiment, if the ratio is less than 0.8 or
larger than 1.2, it can be assigned as false matched
pair. After removing the false matching, the correct
matching is shown in Figure 3.

Figure 3. Matched feature points

Here, a table of experimental comparisons about
false matching removal is shown in Table1.

Here, we also attach a middle experimental result
in Table2 about estimated transformation parameters
when we process a pair of two consecutive images.

4 3D Hilbert scan search

Hilbert scan is a scanning method guided by N-
Dimension Hilbert space filling curve. Here, horizontal
translation ∆x, vertical translation ∆y and rotation
angle θ are three axises in this 3D space. After per-
forming Hilbert scan, the 3D space reduces to 1D space
as shown in Figure 4. The main steps of optimal trans-
formation parameters searching based on 3D Hilbert
scan as follow,

Step 1 Construct the 3D transformation parameter
space(∆x, ∆y, θ).

Step 2 Sample the parameter space into discrete points.

Step 3 Use 3D Hilbert scan to reduce the 3D space to 1D
space.

Step 4 Find the optimal transformation parameters in
the search space using mutual information as the
similarity measurement.

At step 1, we first obtain the coarse estimated rigid
transformation parameters(∆xe,∆ye,θe) by computing
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Figure 4. 3D transformation space and 3D Hilbert
scan reduces 3D space to 1D space[8]

the following equation

(∆xe,∆ye, θe) = arg min
(∆x,∆y,θ)

N∑
i=1

‖T (pi)− qi‖2 (3)

Here T means the rigid transformation matrix
which consists θ, ∆x, and ∆y in equation (1).
pi and qi are the coordinates of matching fea-
ture points. Then we construct a cube in
the 3-D space with [∆xe − L/2 + 1,∆xe + L/2],
[∆ye − L/2 + 1,∆ye + L/2], [θe − L/2 + 1, θe + L/2]
based on the estimated transformation parameters.
The size of the search space is L×L×L corresponding
to the size of 3D Hilbert scan space. In our experiment,
we assigned L as 10.

Step 2 and 3 are done as previously stated. At step
4, in the beginning, we equally divide the 1-D sequence
into k parts using k+ 1 initial points with interval ∆d.
We denote the i-th candidate point as Ci in a candi-
date set. We describe the methodology by an example
as shown in Figure 5. Here mutual information ab-
breviated as MI. For one candidate Ci, its left and
right adjacent points are Ci −∆d and Ci + ∆d, and if
MI(Ci−∆d) < MI(Ci+∆d), then Mi = (Ci+∆d/2).
Next comparing Mi to Ci, if MI(Ci) < MI(Mi), re-
place Ci with Mi, otherwise Ci is still in the candidate
set. Then 70% number of candidates according to the
MI amount remind in candidates set in our experi-
ment.

Figure 5. An example to update the candidate points
to show how to obtain local optima. The red point
is the global optima.

In Figure 5, you can notice that if we process by the
conventional method, the result fails to get global op-
tima presented as the red point. Therefore, we propose
to randomly change the initial candidates by the equa-
tion (4) for several times. If the mutual information on
new candidate is larger than current candidate, then
we update the candidate to new location.

NL(i) = C ×Random(1)× (OL(i)− CL(i)) + CL(i) (4)

Here NL(i) denotes new candidate, CL(i) is current
candidate, and OL(i) is the optimal candidate point up

to present iteration. Random(1) is arbitrary number
from 0 to 1. Finally, We correct the rigid transforma-
tion by 3D Hilbert scan search in this stage.

In the next stage, we rectify the local deforma-
tion which comes from the sectioning part(like tearing,
warping) by the work from Tang, et al. [10].

v(x)∇(Ir(x)) = It(x)− Ir(x) (5)

here It(x) and Ir(x) are the gray value of the It and
Ir at the x location. ∇(Ir(x)) is the gradient of the Ir
at x. And v(x) is the displacement from It to Ir at x.
For global continuity, Gaussian filter Gσ(x) is utilized
to smooth the displacement field, so we modify the
resulting deformation field by

vn+1(x) = Gσ⊗(vn(x)+
(It(x)− Ir(x))∇(Ir(x))

k||∇(Ir(x))||2 + α(It(x)− Ir(x))2
)

(6)

In this equation, it need k and α to allow large de-
formation in order to improve accuracy, and the algo-
rithm should be more precise when the difference of MI
change less than a threshold, so k and α need become
larger. Here we propose a default α and adaptively
change k by the following equation.

k=

{
k0 MI > ε

k1 − e
−(n−n0)

b MIε

Here ε is a preset threshold. n0 is the iteration time
when MI reach a present threshold β.

The displacement field can be updated vn(x) step
by step. In every loop, the target image is deformed
by the displacement field and the mutual information
amount is computed. If the amount exceeds our pre-
set threshold or process fulfills the iteration number,
the process is forced to end. In this stage, we adopt
the validation model[5] which can avoid displacement
error propagation.

5 Experiment

5.1 Evaluation method

For evaluating our proposed method, we adopt the
evaluation method proposed in paper[5]. The accuracy
is computed as
accuracy =

∑
(x,y)⊂S a(x, y)/M ,

where S is the common region of the adjacent image
pairs. M is the number of pixels in the common region.
a(x, y) is defined as follows

a(x, y) =

{
1 |Ir(x, y)− I ′t(x, y)| < threshold
0 else

,

where Ir is the reference image while I ′t is the regis-
tered image. The threshold is set as 15 in our experi-
ment. The reason for us to select 15 as threshold is to
ease our comparison with the reference paper [5].

5.2 Material and experimental results

In this section, a serial microscopic Kidney cell im-
ages are employed to evaluate the performance of our
proposed registration scheme. The number of the slices
is 21 and the resolution of the image is 1208x928.
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Table 3. The average accuracy comparison of differ-
ent methods. Landmark indicates rigid transforma-
tion by aligning the landmarks. MMI is rigid trans-
formation by maximizing MI by gradient descent op-
timizer.

Method Landmark MMI Wang’s Ours
Accuracy 0.8450 0.8567 0.8475 0.8699
Time(s) 1.23 6.12 7.45 7.65

In figure 6, we demonstrate the overlap of two adja-
cent images. Figure 6(a) shows that there exist false
aligned pixels between consecutive images. However in
the Figure6(b) and Figure 6(c), the false aligned pixel
are eliminated.

(a) (b)

(c) (d)
Figure 6. (a) The overlap of original consecutive
images. (b) The overlap of registered image by
method[5]. (c) The overlap of registered image by
proposed method. Yellow covered region shows that
pixels registered correctly, while the green or red pixel
region show that pixels are faultily registered.

We also test the average accuracy and they are
shown in the table 3. We test the same data on
Chingwei-Wang’s code, and our method performs bet-
ter than Chingwei-Wang’s method[5] as well as other
conventional methods. The average accuracy of our
method is 86.99% while Chingwei-Wang’s method is
84.75%. Besides that, we also show the robustness of
our method by box-plot. Here is a short discussion be-
tween this paper and Wang’s paper. Wang applied B-
Spline method which computes the displacement vec-
tor on control points. Then displacement vectors on
non-control points are interpolated from the displace-
ment vector on control points based on B-Spline func-
tion. But in this paper, we use optical-flow method
which computes displacement vector on every pixel di-
rectly.

Figure 7 shows the box-plot, the less the expansion
of box, the more robust of the method. The box of our
method shows the least expansion, in other words, it
shows the highest robustness of our method is.

As for 3D visualization system, we eliminate image
intensity difference due to difference in imaging condi-
tion. Then consecutive images are registered. Finally
we can visualize the volume data based on ray-casting.
Figure 6(d) shows the 3D Kidney cell structure.

Figure 7. Robustness comparison

6 Conclusion

In this paper, we proposed a novel robust registra-
tion method to register serial microscopic cell images
accurately. We successfully removes those false match-
ing pairs by calculating the distance ratio in two con-
secutive images. And then global rigid transformation
can be corrected by using 3D Hilbert scan search. Fi-
nally we rectify the local deformation. The experimen-
tal results show that our method performs better than
other methods.
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