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Abstract

This paper studies the sensitivity of pose estima-
tion to the 2D measure noise when using virtual visual
servoing. Attempting to apply virtual visual servoing
to image/Geographic Information System (GIS) reg-
istration, the robustness to the noise in images is an
important factor to the accuracy of estimation. To an-
alyze the impact of different levels of noise, a series
of image/GIS registration tests based on synthetic in-
put image are studied. Also, RANSAC is introduced to
improve the robustness of the method. We also com-
pare some different strategies in choosing geometrical
features and in the treatment of projection error vec-
tor in virtual visual servoing, providing a guide for
parametrization.

1 Introduction

Image/GIS (Geographic Information System) regis-
tration in urban environments is an important step
for outdoor augmented reality. It establishes the re-
lationship between the 2D objects in the acquired im-
age/video with the 3D models in the GIS. Registration
is closely related to camera pose estimation: it comes
to estimate the position and orientation of the camera
in the GIS world frame.

Several methods have been proposed to solve the reg-
istration problem. Some methods use fiducial mark-
ers for outdoor tracking [6]. In marker-less circum-
stance, model-based algorithms such as [1] are often
used in pose estimation. Other approaches construct
the model of the scene at the same time as estimating
the camera pose, based on SLAM [7][8] or structure
from motion [9].

Virtual visual servoing [1][2] is a framework for real-
time registration. Its advantage is that it can combine
different geometrical features for tracking. Virtual vi-
sual servoing is quite accurate when the tracked fea-
tures are well extracted from images. However, few
works use virtual visual servoing in outdoor pose esti-
mation [5] with large scale building models.

Indeed, buildings contours extraction is difficult be-
cause of the uncontrollability of urban environments.
This may cause inaccuracy of the extracted contours,
bringing noise and error to pose estimation. Thus the
sensitivity of virtual visual servoing estimation to noise
on observed image features is a key factor. Considering
that the contours of buildings are often occluded by ob-
jects on the ground such as people, cars and trees, we
focus on the buildings skyline as proposed by [4]. The
contribution of this paper consists of assessing the im-
pact of noise on virtual visual servoing pose estimation
using skyline.

2 Image/GIS Registration

This section reminds the principle of image/GIS reg-
istration based on virtual visual servoing and the used
features and parameterization.

2.1 Virtual visual servoing

In virtual visual servoing [1][2], any kind of geomet-
rical feature p can be used as long as the corresponding
interaction matrix is computed. The interaction ma-
trix related to the projection in the image plane pm is
noted as Lpm

and defined by

Lpm
=
∂pm

∂r
(1)

where r is the extrinsic parameters matrix of the cam-
era.

In our experiments, the skyline is modeled as a series
of segments, the straight lines holding these segments
will be used as the input geometric features. Each 2D
line from the skyline is matched with its 3D counter-
part among the GIS building contours. These 2D and
3D lines are provided as input data to virtual visual
servoing, together with an initial camera pose. The
process then estimates the camera pose corresponding
to the input image using virtual visual servoing.

As mentioned in [2], the different kinds of geometri-
cal features correspond to different interaction matri-
ces. For a straight line which is defined as{

A1X +B1Y + C1Z +D1 = 0

A2X +B2Y + C2Z +D2 = 0
(2)

where D1 and D2 are not both zero, and its projection
in image plane defined as

x cos θ + y sin θ − ρ = 0 (3)

the interaction matrix related to (θ, ρ) is defined by

Lpm
=

(
λθ cos θ λθ sin θ −λθρ
λρ cos θ λρ sin θ −λρρ

ρ cos θ −ρ sin θ −1
(1 + ρ2) sin θ −(1 + ρ2) cos θ 0

) (4)

where λθ = (Ai sin θ − Bi cos θ)/Di and λρ =
(Aiρ cos θ + Biρ sin θ + Ci)/Di, with i = 1 or 2 for
which Di 6= 0.

2.2 Pixel parameterization

In order to evaluate projection error in pixels (and
not in meters as in previous equations), the projec-
tion of the straight line of equation (2) in image plane
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should be expressed in pixel:

xpx cos θpx + ypx sin θpx − ρpx = 0 (5)

and the interaction matrix related to (θpx, ρpx) should
then be calculated as

Lpmpx
=
∂pmpx

∂r
=
∂pmpx

∂pm

∂pm

∂r
= JpxLpm

(6)

where Jpx is the Jacobian matrix written as

Jpx =

(
A(θpx, θ) 0

A(θpx, θ)B(θpx, θ, ρ) C(θpx, θ)

)
(7)

with

A(θpx, θ) =
αx
αy

(
cos θpx
cos θ

)2

(8)

B(θpx, θ, ρ) = y0 cos θpx − x0 sin θpx

+ αyρ
sin θ

cos θpx
− αxρ

sin θpx
cos θ

(9)

C(θpx, θ) = αx

(
cos θpx
cos θ

)
(10)

where αx, αy and s are the camera intrinsic parame-
ters, αx and αy are the scale factors in x and y direc-
tions, and s is the skew of the camera.

2.3 Normalization

Additionally, a normalization between the errors on
ρ and on θ may be added to take into account their dif-
ferent order of magnitude. The projection error vector
is normalized by dividing fixed coefficients, which are
the coordinates by the maximum initial error on ρ and
on θ respectively.

2.4 Robust estimation with RANSAC

In our experiments, we want to estimate the benefit
of a robust estimator such as RANSAC [3] for reducing
the impact of noise in the estimation of camera pose.

After the matching between straight lines forming
the skyline in both model and image spaces, RANSAC
is launched on the set S of matched features. For each
trial, a minimum set si of three features will be ran-
domly sampled from S, then virtual visual servoing will
be applied on si to estimate the camera pose, noted as
the transform matrix cM∗o(si), from the world coordi-
nate system to the camera coordinate system.

For each estimation cM∗o(si), other features in S are
tested by calculating the distance between image sky-
line and projected segment:

d(pmd
,pm(cM∗o(si))) < ε1 (11)

Here the distance between segments is defined as

d(s1, s2) = max(d(m1, s2), d(m2, s1)) (12)

where s1, s2 represent two segments, and m1,m2 are
the midpoints of the two segments respectively. The
distance d(m, s) is defined as the distance from point
m to the straight line holding the segment s.

A feature which passes the test in equation (11) with
the estimation cM∗o(si) is noted as an inlier to this es-
timation. The estimation cM∗o(si) showing the higher
number of inliers will be chosen as the estimation of
RANSAC.

3 Experimental Setup

In order to control the level of noise on the data,
all tests use synthetic images of 800 × 800 pixels as
inputs (Figure 1). The ground-truth image skyline is
generated from the building models using the known
ground-truth camera pose. Then, the skyline segments
in 3D models are computed by back-projection from
the ground-truth image skyline. The matching be-
tween 2D lines of image skyline and 3D lines of GIS
model is also done by using the ground-truth cam-
era pose, and it is thus guaranteed to be correct in
these experiments. The input initial pose is obtained
by adding uniform random shift to the ground-truth
camera pose, with an amplitude of 5 degrees and 5
meters respectively for rotation and translation, which
is similar to the error provided by real sensors in an
urban environment[10][11].

Two types of tests will be launched. In the first
test, no noise is added on image skyline, and we aim
to study the accuracy of pose estimation for different
parameterization choices. In the second test, the pa-
rameterization is fixed, and noise is added to 2D image
segments end points for studying the sensitivity of vir-
tual visual servoing to noise in image measurements.

Figure 1. Example of images of two tests. Top
two images are input synthetic images (green)
with projected building contours by initial pose
(light blue) and generated image skyline (red),
bottom two images display the registration re-
sults (green for ground-truth and yellow for es-
timation) corresponding to top images respec-
tively. In the registration image of the first case
(bottom left image), the two projected building
contours are superimposed since the estimation
fits the ground-truth.

3.1 Impact of parameterization on pose estima-
tion

In this first part of tests, the ground-truth image
skyline and an approximate initial pose is provided as
described before. Virtual visual servoing is applied on
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the matched features and initial pose to refine the cam-
era pose. Several parameterization (either (ρ, θ) in (3)
or (ρpx, θpx) in (5)) and normalization settings are com-
pared:

(1) Feature on (ρ, θ), no normalization.

(2) Feature on (ρpx, θpx), no normalization.

(3) Feature on (ρ, θ), with normalization.

(4) Feature on (ρpx, θpx), with normalization.

There are 169 tests with different synthetic views
and/or different initial camera poses for each group.

3.2 Impact of image noise

In this experiment, uniform noise is added
on the extreme points of the segments of the
ground-truth image skyline. For a segment
in image plane p1(x1, y1)p2(x2, y2), a noise
eij,i∈{1,2},j∈{x,y} is added forming new segment

p′1(x1 + e1x, y1 + e1y)p′2(x2 + e2x, y2 + e2y), with eij a
uniform random noise in [−emax, emax].

When using RANSAC robust estimation, the thresh-
old of maximum distance ε1 between segments is 2
pixels, minimum number of inliers for a candidate is
Ninlier = 3, and maximum iterations is 50.

Three levels of noise (0.5, 1 and 2 pixel(s)) have
been applied, with 16900 tests launched for each level,
giving out the errors of estimation with and without
RANSAC.

4 Results

The configurations of the experiment to study the
parametrization and the normalization are presented
above. In this section, the results of the experiment
are presented for each study.

4.1 Impact of parameterization on pose estima-
tion

The results on the four different parameterization
and normalization settings are shown in tables 1 and 2.

The results show that the parameterization on me-
ter performs better than the one on pixel. For the
test groups without normalization, the performance of
straight line feature in pixel is much worse than in me-
ter, both on the average estimation error on translation
or on rotation, and on the standard deviation of error
which describes the stability of the algorithm. This is
because of the unbalanced magnitude of error on ρpx
and on θpx. When we choose the parameterization on
(ρ, θ), the errors on ρ and on θ are of the same order
of magnitude. However, if we use the parameterization
on (ρpx, θpx), the error on ρpx may be of several tens of
pixels while the error on θpx is rather tenth of radians,
which may cause the unbalance of influence of ρpx and
θpx in iterations of virtual visual servoing.

Notice that the difference between the results of pa-
rameterization on (ρ, θ) and the one on (ρpx, θpx) indi-
cates that the different parameterizations are not just
a change of the unit as it may look like. In fact, the
change of parameterization leads to a different interac-
tion matrix, which means a different geometrical model

of feature. As what we see in this experiment, the
parameterization on (ρpx, θpx) causes the unbalanced
magnitude of error on different coordinates. This may
lead to the false termination of virtual visual servoing
iteration, which brings a larger estimation error.

This also explains why the normalization has an ob-
vious effect on the results of the test groups of geo-
metrical feature in pixel. Comparing the result of test
groups (3) and (4), which are the tests with normaliza-
tion by dividing the maximum initial error in projec-
tion error vector of each component, though the group
(4) (i.e. geometrical feature in pixel with normaliza-
tion) is still worse than the group (3), the difference
between the group of meter and the group of pixel is
much smaller than the difference without normaliza-
tion. For the group of 2D lines in pixel, the proper
normalization can greatly improve the performance of
estimation, since it reduces the difference between the
magnitude of error on ρpx and on θpx. On the other
hand, the result of normalized group in meter (group
(3)) is on the same level as the no-normalization group.
This indicates that the usual parametrization in meter
with no normalization used in many works has an im-
plicit normalization on ρ and on θ, so it is well adapted
when using the straight line as geometrical feature.

Table 1. Estimation errors on translation with
ground-truth image skyline: Mean error, stan-
dard deviation, and maximum error

Error on translation (cm)
Group mean std max

(1) 0.24 0.39 2.16
(2) 25.0 106 617
(3) 0.24 0.42 2.65
(4) 1.7 21.2 276

Table 2. Estimation errors on rotation with
ground-truth image skyline: Mean error, stan-
dard deviation, and maximum error

Error on rotation (degree)
Group mean std max

(1) 0.0017 0.0015 0.0084
(2) 0.62 4.14 41.8
(3) 0.0017 0.0014 0.0082
(4) 0.0054 0.064 0.84

4.2 Impact of image noise

In this robustness tests, the aim is to study the im-
pact of different levels of noise on the accuracy of es-
timation, and to compare the result with or without
the robust estimation. We have chosen the usual 2D
line in meter without normalization as the geometrical
feature in virtual visual servoing.

Fig. 2 and fig. 3 show the statistical result of the
tests. The result of the virtual visual servoing estima-
tion is the left part for both two figures. In the figures,
each box plot represents the results of tests with a given
noise level. For each box plot, the bottom and top of
the box are the first and third quartiles, and the red
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Figure 2. Estimation errors on translation with
different levels of noise, without RANSAC (left)
and with RANSAC(right)
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Figure 3. Estimation errors on rotation with dif-
ferent levels of noise, without RANSAC (left) and
with RANSAC(right)

band inside the box is the median. The lower whisker
is the 5% of the data, while the top whisker is 95%.
The outliers are not displayed in the figure.

As shown in the figure, the result is strongly influ-
enced by the noise on image skyline. From the level of
noise at 1 pixel, the error of estimation is significantly
increased. The impact of a 2 pixel noise is very signif-
icant, as the translation error and the rotation error is
larger than 1 meter or 1 degree respectively for most
tests.

This shows that image noise has a strong impact on
estimated pose and that even a 1 pixel error on segment
extreme points cannot be neglected.

4.3 Robust estimation

The right parts of fig. 2 and of fig. 3 show the results
of RANSAC estimation. Compared to the estimation
without RANSAC, we can see that the estimation ac-
curacy is largely improved. The error of RANSAC es-
timation on noise level at 1 pixel is rather acceptable,
and the result on noise level at 2 pixels has also a large
improvement.

The result also shows that RANSAC estimation has
a significant impact on reducing final error on both
translation and rotation, and the error reduction is
more notable on translation.

This test shows that even without matching errors,
using a robust estimation as RANSAC has a significant
benefit in the presence of noise on image features.

5 Conclusion

In this paper, we have compared several different
parameterizations in applying virtual visual servoing
to the estimation of camera pose in urban environ-
ments, and we have brought out the study of sensi-
tivity to noise on 2D measures of virtual visual servo-
ing. The comparison of parameterizations shows the
importance of balance in different components of pro-
jection error vector. This explains why the usual me-
ter/radians parameterization for polar representation
of 2D lines is well adapted. The study of sensitivity
towards noise of virtual visual servoing explains the
difficulty of applying the virtual visual servoing in out-
door use case such as pose estimation in urban environ-
ments. However, robust estimation method, RANSAC
for instance, can improve the robustness of virtual vi-
sual servoing against the noise on 2D measures. For
future study, false detection of line segments in image
and false matching between image skyline and model
will be added for a better simulation of reality.
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