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Abstract

This paper proposes a visual-to-speech conversion
method that converts voiceless lip movements into
voiced utterances without recognizing text information.
Inspired by a Gaussian Mixture Model (GMM)-based
voice conversion method, GMM is estimated from
jointed visual and audio features and input visual fea-
tures are converted to audio features using maximum
likelihood estimation. In order to capture lip move-
ments whose frame rate data is smaller than the audio
data, we construct long-term image features. The pro-
posed method has been evaluated using large-vocabulary
continuous speech and experimental results show that
our proposed method effectively estimates spectral en-
velopes and fundamental frequencies of audio speech
from voiceless lip movements.

1 Introduction

Visual-to-Speech Conversion (VTSC) is a technique
that converts “unvoiced” lip movements to “voiced”
utterances. McGurk et al. [1] reported that we per-
ceive a phoneme not only from voice included auditory
information, but also from visual information gathered
from the speaker’s lips and facial movements. More-
over, it has been reported that we try to catch the
movement of lips in a noisy environment and we misun-
derstand the utterance when the movements of the lips
and the voice are not synchronized. VTSC is a difficult
challenge because visual images contain less linguistic
information than audio speech; however, we assume
VTSC will be an assistive technology for those who
have a speech impediment or that it can be adopted to
voice reconstruction of videos lacking sound tracks or
communication tools in noisy environments.

There are two approaches to obtain audio speech
from voiceless lip movements. The first approach is a
combined method of lip reading and Text-To-Speech
(TTS) synthesis. Lip reading is a technique that rec-
ognizes text information from voiceless lip movements.
In this approach, input lip movement is recognized us-
ing lip reading and the estimated text is synthesized to
target voice utterances using TTS systems. This ap-
proach can be called “visual-to-speech synthesis”. The
other approach is a more direct one that does not rec-
ognize the text information of input lip movements.
The former approach may be effective because of recent
developments in lip reading [2] and TTS [3]. However,
the linguistic information of the output voice will be
incorrect when the lipreading system failed to recog-
nize the text. Moreover, the first method needs a large
amount of training data to develop the lipreading and
TTS system. Therefore, this paper adopts the latter
approach, and we call this approach VTSC.

In the field of speech-signal processing, there are
techniques similar to VTSC. Voice Conversion (VC)
converts para-linguistic information such as speaker
identification while maintaining other information,
such as linguistic information, in the speech utter-
ance. A number of VC methods have been pro-
posed [4, 5, 6, 7], and most of them do not recognize the
text information from the input utterance. The Gaus-
sian Mixture Model (GMM)-based approach is widely
used for VC because of its flexibility and good perfor-
mance [4]. In this approach, source and target spectral
features are approximated by GMM and the conver-
sion function is interpreted as the expectation value of
the target spectral envelope. The conversion parame-
ters are evaluated using minimum mean-square error
or maximum likelihood (ML) on a training set [8].

Inspired by the GMM-based VC method [8], we pro-
pose a novel VTSC method based on ML estimation.
Visual features and audio features are jointed and they
are approximated by GMM. Input visual features are
converted to audio features by using ML estimation. In
the case of VC, short-term spectral features are used;
however, it is not effective for VTSC because the frame
rate of the visual data is smaller than audio data and
visual features contain less information compared to
audio features. Therefore, we construct a long-term
image feature, which contains multiple frames of im-
ages. We estimate the spectral envelope and Funda-
mental frequency (F0) from visual image; however,
these two features are estimated independently. Ex-
perimental results show that our proposed VTSC can
effectively estimate the spectral envelope and F0 from
input lip movements of large-vocabulary continuous
speech.

There are some related works. Speech-to-lip move-
ment synthesis is an inverse problem to VTSC. A
recognition-based approach using hidden Markov mod-
els has been widely researched [9]. Lavagetto [10] ap-
plied neural networks to speech-to-lip conversion for
assistive technology for the people with hearing loss.
Zhuang, et al. [11] applied a GMM-VC method [8]
to speech-to-lip conversion. Lip-to-speech synthesis
using non-negative matrix factorization has also pro-
posed [12]; however, it works only for limited data,
such as digit utterances.

The rest of this paper is organized as follows: In Sec-
tion 2, our proposed method is described. In Section
3, the experimental data are evaluated, and the final
section is devoted to our conclusions.
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2 Proposed Visual-to-Speech Conversion

2.1 Feature construction

Fig. 1 shows the flow chart of the visual feature ex-
traction. First, Region of Interest (ROI) is extracted
from visual images. The brightness of the image is reg-
ularized so that they have flat frequency distributions.
Then, 2-dimensional Discrete Cosine Transform (2D-
DCT) is applied to the image, and a zigzag scan is used
to obtain the 1D-DCT coefficient vector. Obtained co-
efficient vectors are normalized by Z-score. In order to
fill the sampling rate gap between audio features, vi-
sual features are interpolated by spline interpolation,
and static image features are obtained.

In order to capture the lip movements, we con-
struct long-term image features. Fig. 2 shows the flow
of the construction. dx(2L + 1)-dimensional segmen-
tal features are constructed from the dx-dimensional
static image vectors x = {x1,x2, . . . ,xT }, where T
denotes the number of the frame. Principal Com-
ponent Analysis (PCA) is applied to the segmental
feature and Dx dimensional long-term image vectors
X = {X1,X2, . . . ,XT } are constructed.

For the audio features, spectral envelope, F0, and
aperiodic components are extracted by using a vocoder
named STRAIGHT [13]. In this paper, the spectral
envelope and F0 are independently estimated from vi-
sual features and aperiodic components are not consid-
ered. For spectrum estimation, the dimensional mel-
cepstrum dy is calculated from STRAIGHT spectrum,
and its delta features are jointed to the static mel-
cepstrum. Static mel-cepstrum y and its delta fea-
tures ∆y are used as target audio feature vectors i.e.
Y = [yT∆yT]T. For F0 estimation, log-scaled F0 and
delta features are used as Y.

We can also use long-term features for audio features
by adopting the flow in Fig. 2. However, in order to
estimate continuous audio features in the conversion
stage, we use a trajectory model, which considers the
relationship between target static features and its delta
features.
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Figure 1. Flow of the visual feature extraction.

2.2 Maximum likelihood-based conversion

We model a joint probability of image features and
audio features using the mixture of multivariate Gaus-
sian distribution N (.;µ,Σ) with parameters of a mean
vector µ and a variance matrix Σ. Therefore, this
model is called a “joint density GMM” (JD-GMM).
In the training stage of the JD-GMM, we use a joint
vector Z that concatenates image feature vector X and
audio feature vector Y (i.e. Z = [XTYT]T). The prob-
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Figure 2. Flow of the construction of long-term
image features.

ability p(Z) is modeled using GMM as follows:

p(Z|Θ(z)) =
M∑

m=1

αmN (Z;µ(z)
m ,Σ(z)

m ), (1)

where µ
(z)
m and Σ(z)

m consist of

µ(z)
m =

[
µ

(x)
m

µ
(y)
m

]
, Σ(z)

m =

[
Σ(xx)

m Σ(xy)
m

Σ(yx)
m Σ(yy)

m

]
. (2)

The parameters µ
(x)
m and Σ(xx)

m , and the parameters

µ
(y)
m andΣ(yy)

m correspond to the Gaussian distribution
of image features and Gaussian distribution of audio
features, respectively. αm denotes the weight of m-th

component. The parameter Σ(xy)
m (= Σ(yx)

m

T
) indicates

a covariance matrix between the observed data X and
Y. Θz is a set of parameters of GMM, which contains

αm, µ
(x)
m , µ

(y)
m , Σ(xx)

m , Σ(yy)
m , and Σ(xy)

m for all m. M
denotes the number of Gaussian mixtures.
In VC, we usually use a diagonal matrix for Σ(xx)

m ,

Σ(xy)
m , and Σ(yy)

m to reduce the number of parameters.
Such parameter reduction is effective in VC because
both X and Y are the same acoustic features. How-
ever, in VTSC, we use full-covariance matrices because
X and Y are different features. The GMM parameters
can be estimated using the Expectation-Maximization
(EM) algorithm.
In the conversion stage, we consider the probability

of Y given an input X. That is

p(Y|X,Θ(z))

=
∑
allm

p(m|X,Θ(z))p(Y|X,m,Θ(z))

=

T∏
t=1

M∑
mt=1

p(mt|Xt,Θ
(z))p(Yt|Xt,mt,Θ

(z)) (3)

where m = {m1,m2, · · · ,mT } is a mixture component
sequence. The probabilities on the right side in Eq. (3)
are represented as

p(mt|Xt,Θ
(z)) =

αmN (Xt;µ
(x)
m ,Σ(xx)

m )∑M
n=1 αnN (Xt;µ

(x)
n ,Σ(xx)

n )
(4)

p(Yt|Xt,mt,Θ
(z)) = N (Yt;E

(y|x)
m,t ,D(y|x)

m ) (5)
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where

E
(y|x)
m,t = µ(y)

m +Σ(yx)
m (Σ(xx)

m )−1(Xt − µ(x)
m ) (6)

D(y|x)
m = Σ(yy)

m −Σ(yx)
m (Σ(xx)

m )−1Σ(xy)
m . (7)

A time sequence of the converted feature vector ŷ is
determined as follows:

ŷ = arg maxP (Y|X,Θ(z)). (8)

Eq. (8) is performed under the linear conversion be-
tween static feature vectors y and the static and dy-
namic feature vectors Y:

Y = Wy (9)

where W is a transformation matrix [8].
Eq. (3) are approximated with a single mixture com-

ponent sequence as follows:

p(Y|X,Θ(z)) ≃ p(m̂|X,Θ(z))p(Y|X, m̂,Θ(z)). (10)

m̂ denotes the suboptimum mixture component se-
quence which is determined as follows:

m̂ = arg maxP (m|X,Θ(z)). (11)

The logarithm of the likelihood function is written as

log p(Y|X, m̂,Θ(z))

=− 1

2
YTD

(y|x)
m̂

−1
Y +YTD

(y|x)
m̂

−1
E

(y|x)
m̂ +K (12)

where

E
(y|x)
m̂ = [E

(y|x)
m̂1,1

,E
(y|x)
m̂2,2

, · · · ,E(y|x)
m̂T ,T ] (13)

D
(y|x)
m̂ = diag[D

(y|x)
m̂1,1

,D
(y|x)
m̂2,2

, · · · ,D(y|x)
m̂T ,T ]. (14)

we can estimate the most probable ŷ as follows:

ŷ = (WTD
(y|x)
m̂

−1
W)−1WTD

(y|x)
m̂

−1
E

(y|x)
m̂ . (15)

We can also maximize the logarithm of the likelihood
function of Eq. (3) by employing the EM algorithm.
However, in VC, there is little difference between the
conversion accuracy when using the suboptimum mix-
ture component sequence and the conversion accuracy
when using the EM algorithm [8] therefore we also
adopt the conversion using the suboptimum mixture
component sequence to VTSC.

3 Experimental Results

3.1 Experimental conditions

The proposed VTSC was evaluated on the M2TINIT
database [14], which contains audio and visual images
of utterances spoken by one Japanese male. Five-
hundred and three Japanese-phoneme balanced sen-
tences are included. The number of the training sen-
tences was chosen from the set {50, 100, 200}. Fifty
sentences, which were not included in the test data,
were used for testing.

The video images contained only images of the area
from the mouth to the tip of the nose. The original
frame rate of images is 1/29.97 sec., and they were

interpolated so that they have the same frame rate as
the audio features. The size of the image was 720×480-
pixels, and a 40× 20-pixels mouth area was extracted.
We introduced 25-dimensional DCT features as static
image features, and set the number of dimensions of
the long-term image feature at 50.
The sampling frequency of the audio speech data

was 16kHz, and the frame shift was 5ms. Each sample
was analyzed by STRAIGHT [13], and F0, spectral
envelope, and aperiodic components were extracted.
Mel-cepstral features, which are used as spectral fea-
tures, were calculated from the STRAIGHT spectral
envelope, and ∆ features were added to them. The
energy of the mel-cepstrum was also used, and the to-
tal number of dimensions of spectral features was 50.
Mel-cepstrum Distortion (MelCD) [dB] was used as a
measure of the objective evaluations of spectrum esti-
mation which is defined as follows:

MelCD = (10/ log 10)

√√√√2

24∑
d

(mcconvd −mctard )2 (16)

where mcconvd and mctard denote the d-th dimension of
the converted and target mel-cepstra, respectively.
For F0 estimation, the number of dimensions of

F0 features was 2, which contains static and delta
features. The estimated spectral envelope and F0
were synthesized to speech signals using STRAIGHT,
where aperiodic components were not considered.
The number of Gaussians was chosen from the set
{8, 16, 32, 64, 128, 256}. We used Root Mean Square
Error (RSME) as a measure of the objective evalua-
tions of log-F0 estimation.

3.2 Results and discussion

First, we evaluated the effectiveness of the long-
term image feature for spectrum estimation. Fig. 3
shows the MelCD using different image features.
Static+delta denotes the joint feature of static DCT
and its delta feature. PCA denotes the long-term im-
age feature and, L is explained in Fig. 2. As shown in
the figure, the long-term image feature using L = 3 is
the most effective for spectrum estimation.
Next, we evaluated the spectrum estimation using

the different number of training sentences and the re-
sults are shown in Fig. 4. The distortion decreases as
we increase the number of training sentences.
Finally, we evaluated the F0 estimation using the

different image features. Fig. 5 shows that the long-
term image features are also effective for F0 estimation.
Fig. 6 and 7 show examples of spectrogram of the

target audio and the estimated audio.

4 Conclusions

This paper proposed a statistical technique for spec-
trum and F0 estimation from image features. We de-
fined VTSC (Visual-to-Speech Conversion) enables the
reconstruction of voiced utterances from unvoiced lip
movement images without recognizing text informa-
tion. Spectrum envelopes or F0 are jointed with image
features, and GMM independently models them. Tar-
get acoustic features are obtained by using ML estima-
tion. In order to capture the movement of the lip from
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image data whose frame rate data is smaller than the
audio data, we used long-term image features, which
considered multiple image frames. Objective evalua-
tions showed that our proposed VTSC method effec-
tively estimated the acoustic features from image fea-
tures. Our future work includes the evaluation of the
other advanced image features and increasing the num-
ber of the subjects.
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Figure 6. An example audio target spectrogram.

Figure 7. An example of an estimated audio spec-
trogram using PCA (L = 3) and 200 training
sentences.
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