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Abstract 

The detection of salient objects in video sequence is an 
active research area of computer vision. One approach is 
to perform joint segmentation of objects and background 
in each image frame of the video. The background scene is 
learned and modeled. Each pixel is classified as back-
ground if it matches the background model. Otherwise the 
pixel belongs to a salient object. The segregation method 
faces many difficulties when the video sequence is cap-
tured under various dynamic circumstances. To tackle 
these challenges, we propose a novel perception-based 
local ternary pattern for background modeling. The local 
pattern is fast to compute and is insensitive to random 
noise, scale transform of intensity. The pattern feature is 
also invariant to rotational transform. We also propose a 
novel scheme for matching a pixel with the background 
model within a spatio-temporal domain. Furthermore, we 
devise two feedback mechanisms for maintaining the 
quality of the result over a long video. First, the back-
ground model is updated immediately based on the 
background subtraction result. Second, the detected ob-
ject is enhanced by adjustment of the segmentation 
conditions in proximity via a propagation scheme. We 
compare our method with state-of-the-art back-
ground/foreground segregation algorithms using various 
video datasets. 

1. Introduction 

The detection of salient objects in video has found 
many applications. Mahadevan and Vasconcelos [1] 
proposed a center-surround framework for saliency de-
tection. Salient objects are detected via background 
subtraction. Background pixels are identified when fea-
tures estimated from the center and surround windows are 
indiscernible. Tang et al. [2] did not perform background 
modeling. Moving objects are directly detected by clus-
tering of salient motion points with spatial kinetic mixture 
of Gaussian model. We also formulate the salien-
cy/non-saliency segregation as a background subtraction 
problem. Background subtraction has various advantages. 
To learn the background model from the video sequence 
can result in robust object detection. The detection of 
salient objects is treated as the complement of background 
subtraction. This concept correlates well with biological 
vision. The background, although seen, is ignored so that 
focus is on the moving targets. 

In background subtraction, pixels in each image frame 
are identified as background if they are similar to the 

background model. The pixels that are not similar are 
classified as foreground (saliency). A background sub-
traction framework contains background modeling, joint 
background/foreground classification, and background 
model updating. A recent survey can be found in [3]. The 
data-driven background subtraction relies on image cues 
for background representation. State-of-the-art algorithms 
employ foreground modeling or feedback mechanism to 
improve moving object detection. 

Background representation – The background scene 
can be represented by statistical model. Pixelwise back-
ground color can be modeled by mixture of Gaussians 
(MOGs) [4]. Zivkovic [5] proposed an algorithm for 
selecting the number of Gaussian distributions using the 
Dirichlet prior. Alternatively, Elgammal et al. [6] esti-
mated the pdf directly from previous pixels using kernel 
estimator. Recently, more researches employ background 
model generated using real observed pixel values. Bar-
nich et al. [7] proposed a fast sample-based background 
subtraction algorithm called ViBe. Background model is 
initialized by randomly sampling of pixels on the first 
image frame. Pixel of the new image frame is classified as 
background when there are sufficient background sam-
ples similar to the new pixel. Hofmann et al. [8] proposed 
a similar sample-based method with more tunable pa-
rameters. Recent researches show that modeling 
background by local patterns can achieve higher accuracy. 
Heikkilä and Pietikäinen [9] proposed to model the 
background of a pixel by local binary pattern (LBP) his-
tograms estimated around that pixel. Liao et al. [10] 
proposed the scale invariant local ternary pattern (SILTP) 
which can tackle illumination variations. 

Foreground enhancement – Saliency detection can be 
very difficult under various complex circumstances. 
Background motions can produce false positive error. 
Foreground detection can be improved via background 
model updating or specific foreground model. Many 
background subtraction methods like [4] update parame-
ters of matched background model with a fixed learning 
factor. In [8], the foreground decision threshold and 
model update rate can be adaptively adjusted along the 
video sequence. In [7], a random policy is employed for 
updating the background model at the pixel location and 
its neighbor. Van Droogenbroeck and Paquot [11] inhib-
ited the update of neighboring background model across 
the background-foreground border. Kim et al. [12] pro-
posed a PID tracking control system for foreground 
segmentation refinement. In [13], MOGs are used to 
model the color distribution of swimmer pixels. Sheikh 
and Shah [14] presented a non-parametric density esti-
mation method to model foreground. 
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2. Perception-based Local Ternary Pattern 

A pattern, with multiple pixels, can characterize the 
local texture more effectively than individual pixel. Bio-
logical vision can perceive saliency by local feature 
contrast. With this concept, we propose a novel percep-
tion-based local ternary pattern (P-LTP) which 
characterizes each pixel based on the perceptual differ-
ences with its neighbors. Figure 1 shows a block of 3 x 3 
pixels. Each pixel of the block, n1 to n8, is compared with 
the center pixel b. The confidence interval CI of b is de-
fined by (CIl, CIu) where CIl and CIu are the lower bound 
and upper bound of CI respectively. If a neighboring pixel 
n has color within the CI of b, its pattern value t is set 
equal to 0. If it is above or below CI, its pattern value is set 
equal to 1 or -1 respectively. 

𝑡𝑘 = {
0,
1,
−1,

𝐶𝐼𝑙 ≤ 𝑛𝑘 ≤ 𝐶𝐼𝑢
𝑛𝑘 > 𝐶𝐼𝑢
𝑛𝑘 < 𝐶𝐼𝑙

, 1 ≤ 𝑘 ≤ 8 (1) 

 

 

 

 
Figure 1.  Formation of ternary pattern. 

 
The confidence interval of a pixel having a color value b 
is defined as (b – d1, b + d2). According to Weber’s law 
[15], d1 and d2 depend on the perceptual characteristics 
of b. That is, they should be small for darker color and 
large for brighter color. Therefore, the confidence inter-
val is defined as (b – c1b, b + c2b). Using peak 
signal-to-noise ratio (PSNR) measure, b and b – c1b are 
just perceptually different from each other if 

20𝑙𝑜𝑔10
𝐼𝑚𝑎𝑥

𝑏−𝑐1𝑏
− 20𝑙𝑜𝑔10

𝐼𝑚𝑎𝑥

𝑏
= 𝑇𝑝 (2) 

where Imax is the maximum intensity and Tp is the per-
ceptual threshold. Similarly, b and b + c2b are just 
perceptually different from each other if 

20𝑙𝑜𝑔10
𝐼𝑚𝑎𝑥

𝑏
− 20𝑙𝑜𝑔10

𝐼𝑚𝑎𝑥

𝑏+𝑐2𝑏
= 𝑇𝑝 (3) 

Motion picture experts group committee [16] recom-

mends a difference of PSNRs at least 0.5 dB as 

distinguishable. In our initial background modeling, the 

perceptual threshold is raised. Assume Tp is 1.0 dB, c1 = 

0.1087 and c2 = 0.1220. 
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Figure 2.  Formation of local pattern: (a) LBP, (b) P-LTP. 
 
Figure 2(a) illustrates the formation of a conventional 
LBP. The first row shows the formation of LBP for a 
noise-free image. The second row indicates that LBP is 
not robust to additive random noise. The third row also 
shows that LBP cannot keep its invariance against scale 
transform of intensity. Figure 2(b) illustrates the for-
mation of P-LTP under the same circumstances. It can be 
seen that P-LTP is robust against random noise and scale 
transform. 

3. Background Model Initialization 

A short image sequence is used to generate the initial 
background model. The pixelwise background model 
contains two bags of samples. At a given pixel location, 
colors of all the temporal samples are entered into the 
background model for that pixel location. Also a block is 
defined in each initialization image frame centered at that 
pixel location. The block of pixels is transformed into 
local ternary pattern. Features are computed from this 
local pattern. All features, estimated from the spa-
tio-temporal domain, are also entered into the background 
model for that pixel location. 

Temporal color samples – We used invariant color 
features to represent the color of the pixel. First, we col-
lect temporal samples represented by the normalized 
color model as defined by [17]. Normalized color varies 
with a change in object’s material and highlights. Our 
method can correctly classify shaded object region 
shadow and shadow cast on background. It should be 
noted that normalized color is indistinguishable along the 
grey scale of the RGB color space. It is also unstable near 
the black vertex where normalized color is undefined. 
Therefore, we also collect the temporal RGB samples. In 
the background subtraction process, our method will 
automatically shift to use the temporal RGB samples 
when {|R – G|, |G – B|, |R – G|} < threshold. The threshold 
is fixed as 10% of the range of color component value 
which is 26. 

Spatio-temporal local pattern samples – As the 
computation load for spatio-temporal samples is higher 
than that of the temporal samples, we need to consider the 
sampling domain carefully in order to strike a balance 
between robustness of background model and computa-
tion load. We have done experimentation and find that a 
block size of 3 x 3 pixels is most suitable. In initialization, 
a very short image sequence may not sufficiently capture 
the dynamic information of the background while a very 
long image sequence will demand long computation time 
and more storage space. We fixed the number of initiali-
zation image frames as 30. 

Figure 3.  Computation of P-LTP feature. 
 

At a given pixel location, a block of pixels is defined. 
For each color component, a ternary local pattern P-LTP is 
formed. The pattern codes are summed to form one fea-
ture value for the center pixel. Figure 3 illustrates the 
estimation of one feature value with numbers corre-
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sponding to magnitudes of one color component. A ho-
mogeneous block will have very small feature values 
while a block with neighboring pixels perceptually dif-
ferent from the center pixel will have large positive or 
negative feature values. Therefore, the feature values 
characterize the texture pattern. Moreover, the pattern can 
be represented by small amount of feature values (3 for 
three color components). In contrast, histogram repre-
sentation will demand more memory for a pattern with p 
neighboring pixels in the order of 2

p
. Liao et al. [10] 

proposed a scale invariant local ternary pattern (SILTP). 
However, SILTP feature is not rotation invariant. The 
pattern is not perception-based. The 2 thresholds are fixed 
as ±0.05b. The P-LTP feature, as shown in Figure 3, is 
rotation invariant. The range of P-LTP feature is 17 x 17 x 
17 = 4913, which is much larger than that of 256 in his-
togram representation. 

4. Background-Foreground Segregation 

Saliency in video is detected by our perception-based 
saliency detection (PSD). If all feature values of the new 
pixel match with some temporal color samples or spa-
tio-temporal local binary pattern features of the 
background model, the pixel is labeled as background. 
Otherwise, it is labeled as foreground. We propose a novel 
scheme to estimate the similarity between the pixel and 
the background model which strikes for balance between 
efficiency and perceptual accuracy. First, the pixel is 
compared with the temporal color samples of the back-
ground model. The perception-based confidence interval 
of the new pixel is defined. If two temporal color samples 
in the background model are found within that confidence 
interval, the new pixel is labeled as background. In static 
scene, the background subtraction can be accomplished 
quickly by this process. In dynamic scene, it may not be 
possible to find similar color samples. Then, the pixel is 
compared with the spatio-temporal P-LTP features in the 
background model. A block with the new pixel at the 
center is defined. P-LTP feature values for this pixel are 
calculated using the same method as mentioned in the 
previous section. Features of the pixel are compared with 
the features in the background model. We have done 
experimentation and define a spatio-temporal search 
space of 7 x 7 pixels x 30 frames centered at the new pixel 
location. Two patterns are considered similar if the ab-
solute difference of their feature values is <= tolerance. If 
two patterns in the background model match with the 
local pattern of the new pixel, the pixel is labeled as 
background. Otherwise, the pixel is labeled as fore-
ground. 

5. Foreground Enhancement 

In the background model updating, the total number of 
color samples and P-LTP features will remain the same. If 
the new pixel matches with the temporal color features, 
one temporal color sample will be updated by the fol-
lowing equation 

pb

old

bb

new

b
cαc-α ( c  )1   (4) 

where cp is the color of the new pixel, cb is the matched 

temporal color. The updating factor b is inversely related 

to the history of that background sample. 

b

b
history

  
1

  (5) 

otherwise

matchesif

history

history
  history

b

b

b

 
  

,

,1





 
  (6) 

If the P-LTP features of the new pixel match with the 

P-LTP features of the background model, the P-LTP fea-

tures will be updated by the following equation 

pb

old

bb

new

b
fαf-α ( f  )1  (7) 

where fp is the feature value of the new pixel, fb is the 

matched feature in the background model. 
The detected foreground often suffers from distorted 

shape and holes. To remedy these problems, the confi-
dence interval of the foreground pixel and its neighbors is 
tightened. Initially, each pixel position has the confidence 
interval computed by equations (2) and (3) with percep-
tual threshold Tp equal to 1.0 dB and is saved as CI map. 
Assume that a foreground pixel is likely to have fore-
ground neighbors. The CI map is updated by a 
propagation scheme to adjust the confidence interval of 
the foreground pixel and its neighbors with Tp reduced to 
0.5 dB. 

6. Result 

We evaluated and compared the performance of PSD 
with two state-of-the-art background subtraction algo-
rithms ViBe [7] and SILTP [10]. Based on sample 
consensus, ViBe can achieve very good results with very 
few tunable parameters. Moreover, the way temporal 
color samples being used in PSD is similar to ViBe. The 
comparison of PSD with ViBe demonstrates the signifi-
cance of the P-LTP features in background modeling. 
SILTP employs scale invariant local patterns. The com-
parison of PSD with SILTP can demonstrate the 
improvement of scale and rotation invariant P-LTP fea-
tures and spatio-temporal search space in tackling 
dynamic scenes. All methods are evaluated with a fixed 
setting and no post-processing on 3 datasets: Wallflower 
[18], Star [19], ChangeDetection.net [20]. Table 1 shows 
the F-measure (F1) results on the Wallflower dataset. The 
best result in a given row is highlighted. PSD can achieve 
highest F1 on Camouflage and WavingTrees. Overall, 
SILTP achieves the highest average F1, probably because 
the image frame size is small. Table 2 shows the F1 results 
on the Star dataset. PSD can achieve highest F1 on 5 
image sequences. Overall, PSD achieves the highest av-
erage F1 than ViBe and SILTP. Table 3 shows the 
weighted average F1 results on the ChangeDetection.net 
dataset. The videos contain complex backgrounds with 
larger image frame size. PSD can achieve highest F1 on 5 
categories. Overall, PSD achieves the highest average F1 
than ViBe and SILTP. The results of SILTP are lower than 
[10] because no post-processing is applied. Due to page 
limit, Figure 4 shows some visual results. 

Table 1. F1 results on the Wallflower dataset. 

Sequence PSD ViBe SILTP 

Bootstrap 0.426 0.478 0.683 

Camouflage 0.942 0.931 0.921 

ForegroundAperture 0.635 0.644 0.837 

LightSwitch 0.559 0.159 0.715 
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TimeOfDay 0.085 0.394 0.173 

WavingTrees 0.953 0.933 0.686 

Average 0.600 0.590 0.669 

Table 2. F1 results on the Star dataset. 

Sequence PSD ViBe SILTP 

AirportHall 0.553 0.496 0.566 

Bootstrap 0.503 0.514 0.519 

Curtain 0.833 0.775 0.687 

Escalator 0.378 0.445 0.267 

Fountain 0.535 0.425 0.237 

ShoppingMall 0.620 0.522 0.566 

Lobby 0.234 0.029 0.509 

Trees 0.637 0.345 0.099 

WaterSurface 0.866 0.801 0.333 

Average 0.573 0.483 0.420 

Table 3. F1 results on the ChangeDetection.net dataset. 

Category PSD ViBe SILTP 

baseline 0.883 0.874 0.415 

dynamic background 0.517 0.364 0.031 

camera jitter 0.630 0.575 0.186 

intermittent object motion 0.580 0.532 0.397 

shadow 0.561 0.781 0.366 

thermal 0.710 0.610 0.282 

Average 0.632 0.601 0.346 

    

    

    

Figure 4.  Background subtraction results on the 
ChangeDetection.net dataset (baseline, dynamic back-

ground, camera jitter) – original image frames (first 
column), results obtained by ViBe (second column), re-
sults obtained by SILTP (third column), results obtained 

by PSD (fourth column), ground truths (last column). 

7. Conclusion 

We propose a method for saliency detection in video. 
The non-salient background is modeled by percep-
tion-based color and local ternary pattern features. The 
P-LTP feature is robust to random noise and invariant to 
scale and rotation transforms. In background-foreground 
segregation, each pixel of the current image frame is 
classified as background if it matches with the back-
ground model in the spatio-temporal search space. 
Otherwise, the pixel is classified as foreground. PSD can 
produce much less false positive errors whilst also keep-
ing false negative errors low. The background model and 
the segmentation condition are adaptive in order to en-
hance the saliency detection over a long video sequence. 
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