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Abstract

In this paper, we propose a novel deep neural net-
work based on learning subspaces and convolutional
neural network with applications in image classifica-
tion. Recently, multistage PCA based filter banks have
been successfully adopted in convolutional neural net-
works architectures in many applications including tex-
ture classification, face recognition and scene under-
standing. These approaches have shown to be pow-
erful, with a straightforward implementation that en-
ables a fast prototyping of efficient image classification
systems. However, these architectures employ filters
based on PCA, which may not achieve high discrim-
inative features in more complicated computer vision
datasets. In order to cope with the aforementioned
drawback, we propose a Hybrid Subspace Neural Net-
work (HS–Net). The proposed architecture employs fil-
ters from both PCA and discriminative filters banks
from more sophisticated subspace methods, therefore
achieving more representative and discriminative in-
formation. In addition, the use of hybrid architecture
enables the use of supervised and unsupervised samples,
depending on the application, making the introduced
architecture quite attractive in practical terms. Ex-
perimental results on three publicly available datasets
demonstrate the effectiveness and the practicability of
the proposed architecture.

1 Introduction

Image classification is one of the central problems in
several fields such as pattern recognition, computer vi-
sion and image analysis. Since it is an important task
for the success of a diverse range of applications in-
cluding human-computer interaction, image and video
retrieval, video surveillance, biometrics and social me-
dia networks [1, 2]. Such a complex task may be af-
fected by many factors, like misalignment of the target
objects, illumination conditions, occlusions, low image
contrast and incorrect camera position. Generally, the
categorization process of the input images into train-
ing classes may be quite difficult due to the fact that
images from the same class might have large variation,
making it impractical to create a model to represent
this class in a coherent way. In addition, images from
different classes may share common structures, increas-
ing the difficulties of the classification task, as the set
of common structures may reduce the discriminative
ability of the model.
Recently, representation learning has been employed

as a competitive alternative to hand-crafted features,
such as Gabor features and Local Binary Patterns
(LBP) for texture and face classification, and Scale-

Invariant Feature Transform (SIFT) and Histogram of
Oriented Gradients (HOG) features for object recog-
nition [3, 4]. Learning through deep neural networks
has received significant attention due to its impressive
improvements over hand-crafted features. A main con-
cept of deep learning is that all relevant information
required for recognizing image patterns are contained
in hierarchical neural network models through itera-
tive learning of exemplar image patterns. By produc-
ing multiple levels of representation through the use
of hierarchical models, the higher-level features gen-
erate more abstract semantics of the training images,
achieving more invariance to intra-class variability.

An example of deep learning architecture is Convo-
lutional Neural Network (CNN) that reached the state-
of-the-art performance in various applications [5, 6, 7].
Despite its successful in several applications, the num-
ber of parameters to be trained is very large due to
the large amount of data to be used, which can lead
to a high computational cost, even when using ma-
chines equipped with GPU. This high computational
complexity required from most of the deep learning
architectures prevents some computer vision applica-
tions to fully employ the capabilities of deep convolu-
tional networks. In order to solve this issue, several
deep learning networks have been proposed based on
PCA [8], LDA [9], Gabor and ICA [10] filter banks. For
instance, in [8] is proposed a convolutional neural net-
work with no pooling layers, nor active functions and
without using back-propagation to learn the weights
of the layers. Instead, PCA and LDA are employed
to learn and handle the weights of the layers as filter
banks in CNN. This approach exhibited performance
comparable to the state-of-the-art for several image
classification tasks. Other examples include a multi-
linear discriminant analysis network (MLDANet) [11]
for tensor object classification and a discrete cosine
transform network (DCTNet) [12] for face recognition.

Recently, Generalized Difference Subspace
(GDS) [13] was proposed as a powerful feature
descriptor for image classification. The core idea of
GDS is based on the assumption that local shape
differences among objects provide an efficient ap-
proach to represent the objects. GDS is performed by
generating a subspace that encapsulates the difference
components among all the class subspaces. This
method has an impressive ability to evaluate local
structures differences between the different class
subspaces. Its effectiveness has been proved through
extensive experimentation on several tasks, including
face recognition and hand shape classification of
multi-view images.

Although convolutional networks based on PCA
have been successfully applied in various recognition
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tasks, PCA filters are not able to efficiently describe
high overlapping distributions, which are easily found
challenging datasets. In order to deal with the afore-
mentioned drawback, this paper presents a novel ob-
ject recognition method based on convolutional net-
works and GDS, called Hybrid Subspace Neural Net-
work (HS–Net). In contrast with convolutional net-
works based on PCA [8, 10], the filter banks employed
by HS–Net are produced by PCA and Difference Sub-
spaces, which preserve the discriminative information
among different classes, generating more efficient rep-
resentations. In addition, HS–Net is able to operate on
both labeled and unlabeled data, improving the perfor-
mance in the presence of large volumes of data. There-
fore, our contributions are twofold: (1) We investigate
the use of a novel filter bank based on GDS. This fil-
ter bank is more powerful than PCA bank filters, as
GDS preserves discriminative information, which is not
achievable by PCA. (2) We examine the capabilities of
PCA and GDS in a deep learning approach in order
to exploit supervised and unsupervised data, creating
a very flexible framework.

2 Related Work

In this session, we provide a brief review on CNN
based-PCA, LDA and variants. This analysis is im-
portant in order to clarify the differences between the
proposed network and the currenting methods. As well
known, learning features directly from the datasets,
rather than create complicated techniques has been
recognized as a dominant trend to prevent the draw-
backs of handcrafted features. Recently, most of the
literature have pointed out that deep network archi-
tectures can produce higher level features and repre-
sent the abstract semantics of the data, decreasing the
influence of intra-class variability. Therefore, learning
features through the use of deep network architectures
provides more invariance to intra-class variability.
Deep architectures based on CNN generally contains

the following stages: convolutional filter layer, non-
linear processing layer, and feature pooling layer. In
order to initialize the parameter of filter kernels and
additive bias, a random schema is employed, which
is iteratively updated by stochastic gradient descent
(SGD). To cope with the nonlinear processing layer,
the ReLu [14] and the Sigmoid functions are applied.
Finally, the mean pooling or max pooling are employed
in order to decrease the resolution of the feature map.
The CNN architecture has been used in several tasks
including face recognition [12], object detection [8] and
scene understanding.
PCANet [8] is an image classification framework

based on CNN, where multistage filter banks are
learned from the data as principal components at the
local image patch level. In PCANet, the basis vec-
tors of the local covariance matrix are employed as
filter banks for convolution and feature extraction,
followed by binarization and block-wise histogram-
ing. This straightforward deep learning network works
surprisingly well in a variety of image classification
benchmarks, including handwritten and face recogni-
tion datasets, achieving superior performance to the
state-of-the-art features.
DCTNet [12] is an alternative to PCANet, which

employs Discrete Cosine Transform (DCT) as filter

banks instead of PCA. As well known, PCANet is
data-dependence hence inflexible. In DCTNet, on the
other hand, the filter banks created by DCT achieve a
data-independent network, increasing the performance
of the network. In order to decrease the computational
complexity of the learning stages of the network, 2D
DCT is also employed. Besides the low computational
complexity, 2D DCT filter banks are independent from
data, therefore, generating a learning-free framework.
DCTNet has been widely applied to several bench-
marks of face databases and have shown performance
equivalent or superior to PCANet and LDANet.

In all these examples, the employed techniques can
be regarded as CNN architectures based on local mul-
tistage filter banks [12]. Therefore, we can introduce
more sophisticated subspace methods such as GDS,
where the discriminability of features is enhanced with
the orthogonalization process of the different class sub-
spaces. This fact encourages us to develop the most
sophisticated subspace methods in order to exploits
the use of complementary filters. This capability may
greatly improve the produced features. In addition, to
the best of our knowledge, there is very limited work
conducting this type of analysis on subspace methods
and deep network architectures.

3 Proposed Method

To understand the flow of the framework procedure,
first consider a learning problem with N training im-
ages {Ii}Ni=1, each one with size m × n. Conceptual
illustration of the proposed method can be visualized
in the Figure 1.

3.1 Representation by Patches

First, the images are divided into smaller patches,
so consider a patch size of the form k1 × k2. The
jth patch of the ith image is represented as the vector
xi,j ∈ Rk1k2 . The collection of all overlapping patches
mapped around each pixel is represented as the matrix:
Xi = [xi,1,xi,2, ...,xi,mn] ∈ Rk1k2×mn.

Suppose that for a K classes problem the cth class
holds Nc images. The collection of all images in one
class is represented as: Xc = [X1,X2, ...,XNc

] ∈
Rk1k2×Ncmn.

3.2 Difference Subspace Filtering

The first step in filtering stage is to Principal
Component Analysis (PCA) to be executed for each
class. In terms of the filter space Rk1k2 , and as-
suming a class dimensionality d, it can be said
that the objective of PCA is to find the class sub-
space Ec that minimizes the approximation error, i.e.:

min
∥∥Xc −EcE

T
c Xc

∥∥2
F
, s.t.Ec ∈ Rk1k2×d.

The solution for Ec is to calculate the eigenvectors
of XcX

T
c . Once equipped with all class subspaces, the

sum matrix A is yielded by the covariance matrices of
each class subspace:

A =

C∑
c=1

EcE
T
c (1)
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Figure 1. Conceptual illustration of the proposed method. The HS–Net employs two distinct filters that
works in complementary directions. The input image is represented by its difference subspace features
and PCA features, improving the produced feature robustness, as the difference subspace features enforces
discriminability among different image classes. In order to reduce the high dimensionality of the features
and increase rotation invariance, the proposed method is followed by binarization and histogramming. The
classification is performed by using Linear Support Vector Machine.

The eigenvectors of AAT actually form the sum sub-
space [13], which is the direct sum of a Principal Sub-
space P , and the General Difference Subspace G:

eig(AAT ) = P ⊕G (2)

This relation means that the null space is the only
intersection between P and G, so assuming the dimen-
sionality of the principal subspace is D, the dimension-
ality of the GDS must be at most L = D−k1k2. Thus,
we can say that G ∈ Rk1k2×L.
Each basis vector of the GDS will be a filter in the

network, in such a way that a dimensionality Ls is also
the number of filters in the layer s. By using these con-
cepts, the definition of a GDS filter can be realized as:
W s

l = mapk1×k2
(gl) ∈ Rk1×k2 , l = 1, 2, ..., Ls, where

mapk1×k2
is a function that maps the lth basis vector

gl to a matrix W ∈ Rk1×k2 , which expresses the main
variation between classes in such a way that looks to
maximize their difference, by highlighting local shapes
on its projected images. Then, the output of the stage
is the operation:

I l
i
.
= W s

l ∗ Ii (3)

where ∗ refers to a 2D convolution with zero-padding
in the boundary. That makes I l

i have the same size of
Ii. Note that the output of one stage of GDS Filtering
produces LsN images (i = 1, ..., N and l = 1, ..., Ls).
And similar to DNN and PCANet, multiple filtering
stage architectures can be created, by feeding the pro-
duced images as input to a new stage. In general, a Z
layers filtering system produces NZ = L1L2...LZ im-
ages for each of the N images, so in total NZN images
are produced. For a high number of layers, the num-
ber of filter indexes will increase, so for generalization
purposes the representation of images produced by Z
layers will be {Iz

i }
NZ
z=1. The next steps are the Hashing

and Histogram procedures, which are the same tech-
niques employed by [8].

The vector fi is a column vector in a sparse matrix
of observations f , which is used to train a classifier.
In our architectures we have used support vector ma-
chines (SVM). The hyper-parameters of the HS–Net
include the filter size k1, k2, the number of filters in
each stage L1, L2, ..., LZ , the number of stages Z, the
block size for the histogram, and the dimensionality of
the class subspaces and principal subspace.

4 Experimental Evaluation

In order to evaluate the performance of the HS–Net,
we use LFW dataset [15]. LFW dataset consists of
13233 images of faces collected from the web. The
faces were detected using Viola-Jones face detector
and cropped. In addition, 1680 of all 5749 individ-
uals have two or more distinct photos in the dataset.
LFW dataset is a specially challenging dataset because
it was designed for studying the problem of uncon-
strained face recognition.

For object recognition, we use CIFAR-10 [16] dataset
that consists of 50, 000 training and 10, 000 test images.
In CIFAR-10 dataset there are 10 classes, namely air-
plane, automobile, bird, cat, deer, dog, frog, horse,
ship, and truck. The large variability in scale, view-
point, illumination, and background clutter poses a sig-
nificant challenge for classification.

We also use NYU Depth V1 dataset [17], which was
collected by the New York University. The dataset in-
cludes depth information which contains both geomet-
ric information and distance of objects. NYU Depth
V1 dataset consists of 2347 pairs of images grouped
into seven categories, including bathroom, bedroom,
bookstore, cafe, kitchen, living room, and office.

In our experiments, we set all networks to two lay-
ers as in our experiments employing more than two
layers does not significantly affect the performance of
the methods. In addition, we set the filter size k = 5×5
for each layer and the number of filter for each layer is
P1 = P2 = 8.
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Table 1. Accuracy of HS–Net compared to the PCANet, LDANet and DCTNet.

Databases PCANet LDANet DCTNet HS–Net

CIFAR-10 [16] 78.67 ± 2.11 78.33 ± 2.19 77.13 ± 2.33 80.11 ± 1.93
LFW dataset [15] 85.20 ± 1.46 85.67 ± 1.87 84.20 ± 1.93 86.78 ± 1.39
NYU Depth V1 [17] 81.59 ± 1.55 80.20 ± 1.67 79.33 ± 1.71 82.79 ± 1.47

5 Conclusions and Future Directions

In this paper, we presented a new image classifi-
cation framework for face recognition, object recog-
nition and scene understanding, namely Hybrid Sub-
space Neural Network. In order to show a flexibility of
the proposed method, we perform experiment evalua-
tion on LFW, CIFAR-10 and NYU Depth V1 dataset.
We showed that by employing PCA and DS filters on
HS–Net we could improve the classification accuracy of
the method. In addition, we introduced the concept of
DS filters, which efficiently extracts high discriminant
features, improving the features produced by the pro-
posed method. This fact motivated us to investigate
the relationship between the number of supervised fea-
tures employed by DS filter banks and the number of
unsupervised features employed by PCA filter banks.
The proposed method has the advantage of efficiently
make use of diverse source of features, depending on
the application. Therefore, we experimentally showed
that the resulting framework is competitive with exist-
ing methods while making use of supervised and unsu-
pervised features.
For future work, we will investigate how to auto-

matically select the number of basis vectors employed
by PCA and DS filter banks. An interesting direc-
tion would introduce a new analysis involving all the
eigenvectors of PCA and DS to select the most dis-
criminative filters. Another important avenue is to
develop a tensor version of the HS–Net in order to
deal with video analysis, as gesture recognition and ac-
tion recognition. As is well known, the performance of
subspace-based methods highly depends on the data
distribution. Hence, by using mechanisms where the
relative importance of different data distributions can
be analyzed separately one may perform a weighted
combination of the filter banks, improving the quality
of the features produced by the network.
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