
Model-Based 3D Pose Estimation for Pick-and-Place Application

Shih-Cheng Liang, Huei-Yung Lin
Department of Electrical Engineering

Advanced Institute of Manufacturing with High-Tech Innovation
National Chung Cheng University

168 University Road, Min-Hsiung, Chiayi 621, Taiwan

Chin-Chen Chang
Department of Computer Science and Information Engineering

National United University, Miaoli 360, Taiwan

Abstract

Due to the recent development of industrial automa-
tion, some applications have been improved with com-
puter vision techniques. One important task is to rec-
ognize and estimate the 3D pose of the object in the
scene. In this work, we use a depth camera to cap-
ture the 3D information of a scene, and proposed a
3D pose estimation algorithm. A main difficulty of
the 3D object recognition and pose estimation is the
captured data may have noise from the environment
light, shadow or sensors. In general, the reference
model and target model are captured from the same
depth camera, so they will have similar data structures.
However, in our work, we consider the target model
generated from Computer-Aided-Design, and the ref-
erence model is captured from the depth camera. The
data from different sources will cause the estimation
error. In this work, we have addressed this problem.
Finally, we develop the simulation system for our pro-
posed method, and also simulate a manipulator to ac-
complish the pick-and-place task.

1 Introduction

The objective of this work is to derive the 3D pose of
an object in the scene based on the depth information
acquired by an RGB-D camera [11, 9]. First, we de-
velop a simulation system to build the ground truth of
the object in the synthetic scene, and design a method
to simulate the depth camera to capture the 3D images
in the virtual environment. Our proposed pose estima-
tion algorithm is then used to compute the translation
and orientation of the object and verify the correctness
[12, 3]. Finally, according the estimated 3D pose of the
object, a manipulator is instructed to move to a suit-
able position, pick up the object, and place it on the
target location to complete an industrial automation
task.

In this paper, we address the technical issues of the
pick-and-place application. The proposed approach
mainly contains two parts: “3D object pose estima-
tion and evaluation” and “simulation system for the
virtual environment.” For the simulation system, we
first consider the image formation of the depth camera
in the virtual environment. It takes the perspective
projection into consideration to generate the 3D point
clouds in the camera coordinate system. A graphical
model of a five-axis robotic arm is then constructed in
the virtual environment to emulate the movement of
the real manipulator. The inverse kinematics of the

(a) Environment. (b) Camera view.
Figure 1. The schematic diagram of the camera
and environment setting for depth image acqui-
sition and 3D object pose estimation.

robot motion is calculated and used to demonstrate
the pick-and-place task.

For 3D pose estimation and evaluation, the CAD
(computer-aided design) model of the object is created
and placed at an initial position in the environment.
The alignment between the CAD model and the 3D
scene captured by the depth camera is achieved using
our 3D pose estimation algorithm, which is capable of
computing the translation and rotation with respect
to the initial CAD model pose [1]. Since the input
source from the depth camera usually contains noise,
the matching with the ideal 3D model can be inaccu-
rate. We have proposed an evaluation mechanism to
verify the pose estimation results.

To estimate the 3D pose of the object, an RGB-D
camera is adopted. A schematic diagram is shown in
Fig. 1. The virtual environment for 3D scene acquisi-
tion and the camera view are illustrated in Figs. 1(a)
and 1(b), respectively. In the experiments, we deal
with a more complicated situation where some objects
are occluded by others.

2 Our Approach

Our proposed technique for 3D pose estimation con-
sists of five steps. In the first step, the CAD model gen-
erated with mesh data is converted to the point cloud
data. The scene model of the object is then captured
by a depth camera. In addition to the RGB-D images
taken from the real world, we also generate a com-
puter graphical model for the target object [7]. Fur-
thermore, the data points of the captured scene model
are down-sampled to reduce the computational cost of
the pose estimation algorithm. Third, the clustering
step removes the background and noise, and clusters
the object in the scene. It is used to identify the ver-

15th IAPR International Conference on Machine Vision Applications (MVA)
Nagoya University, Nagoya, Japan, May 8-12, 2017.

© 2017 MVA Organization

15-01

382

tices of the same object. The 3D pose of each object
is then calculated by the ICP algorithm [4]. Since the
estimated result is generally not accurate, the ICP al-
gorithm is improved by a novel idea proposed in this
work. Finally, we verify the 3D pose estimation results
to evaluate if the object is suitable for manipulator
picking.

The preprocessing stage consists of two parts: scal-
ing the CAD model and generating the point cloud
from the mesh model. Since the dimension of the gen-
erated CAD model may not be equivalent to the di-
mension of the real world object, it is necessary to
scale the CAD model and make it comparative to the
captured 3D object data for pose estimation [6, 2]. Let
the scale of the object and the CAD model are S and
M , respectively. If the CAD model is represented by
P (V), where V = v1, v2, · · · , vn, and n is the number
of the points. Then the new CAD model with the same
scale as the object is given by

PN (V) = µP (V), µ =
S

M

As for generating the point cloud from the mesh model,
the objective is to fill the points in the triangular mesh
of the CAD model. Let

F (km) = (vm1, vm2, vm3), m = 1, 2, · · · , N

represent the triangles of the mesh, where N is the
number of triangles, and vm1, vm2, vm3 are the vertices
of the triangle. We first define the vectors

~v1 = vm2 − vm1 and ~v2 = vm3 − vm1

the new points inside the triangle can be generated by

vn = vm1 + α~v1 + β~v2

where α and β are arbitrary constants with the condi-
tions

0 ≤ α, 0 ≤ β, α+ β ≤ 1

Setting the density Sd (points/unit) by adjusting the
parameters α and β, we can fill the triangular mesh
uniformly with additional points.

To capture the point cloud of the scene, a depth cam-
era is placed above the objects and facing downwards.
Several cuboids of the same size are used to simulate
the real pick-and-place task. Fig. 2 shows the im-
age and 3D point cloud captured by a structured light
depth camera. The data set contains 233,491 points.
Since a large number of points will cause the pose es-
timation algorithm running slowly, it is down-sampled
using voxel grid filtering for further processing. In the
next step, the 3D point cloud is processed with the
clustering algorithm stated in Algorithm 1 to sepa-
rate the objects.

The original ICP algorithm is commonly affected by
the initial position so that the 3D pose estimation will
possibly not converge to the correct results. If some ex-
tra amount of movement is applied to the wrong pose,
there is a better chance not to fall into the incorrect
local minimum in the next iteration. Thus, we propose
a technique to use the genetic algorithm to provide the
additional poses to adjust the model position and find
the correct 3D pose [5].

(a) The original image. (b) Point cloud data points.

Figure 2. Real scene with several objects.

Algorithm 1 Clustering

Require: p (Point Cloud of Scene Model)
Ensure: clustering object
1: p build the kd-tree
2: select a never visited point, then push back to stack

buffer
3: let a is a point that pop up from stack buffer, check

the point whether to visited, then a be a search
point to find neighbor point in kd-tree p.

4: if the distance from neighbor point to a is less than
t, we can push back that point to stack buffer and
that point is a same object with a.

5: repeat step 3, if stack buffer is empty, then repeat
step 2.

6: if all points are visited, the algorithm is end.

Consider six unknown parameters, including the
translation movement (Mx,My,Mz) and the rotation
angles (α,β,γ) along three axes. The fitness function
of the genetic algorithm is to minimize the equation

E =
∑
‖Rp+ T − q‖2

where R = Rz(γ)Ry(β)Rx(α), T = [Mx My Mz]>, p
is the scene model, and q is the CAD model. Since
the computational cost of the genetic algorithm is rel-
atively high, it is carried out only the following condi-
tions hold:

|E(k + 1)− E(k)| ≤ 10−6, E(k + 1) ≥ T

That is, the error difference between two consecutive
iterations is less than 10−6 and the error of the current
iteration is greater than a threshold T . The former case
means the ICP solution falls into the local minimum,
and the latter condition indicates the current 3D pose
is not correct.

Each of iteration of the genetic algorithm uses the
current pose to calculate the fitness function. After
the calculation is completed the genetic algorithm ob-
tains a solution, and the current pose information is
updated. The iteration of the ICP algorithm then con-
tinues. It should be noted that the genetic algorithm
does not always give the best solution and find the cor-
rect pose. The idea is to significantly adjust the over-
all pose by the characteristics of the genetic algorithm,
and then followed by the ICP algorithm to achieve the
correct pose.

In the last step, we verify the accuracy of the 3D pose
estimation. Since the scene model and the CAD model
are obtained from the depth camera and the computer
graphical model, respectively, the density distributions

383

(a) Large overlap ratio. (b) Small overlap ratio.

Figure 3. Verification and evaluation.

of the input data from different sources are not consis-
tent. As a result, the 3D points of the scene and the
generated point cloud of the CAD model do not over-
lap pointwise directly, even with a correct 3D pose.
Thus, we propose two methods to evaluate the accu-
racy and correctness of the 3D pose estimation results.
We first consider the ratio of overlap by calculating
the percentage of overlapping regions with respect to
the CAD model. The ratio of inverse overlap is then
computed in terms of the percentage of overlapping re-
gions with respect to the scene model. The details of
these two evaluation techniques are described in Al-
gorithms 2 and 3, respectively.

Algorithm 2 The ratio of overlap

Require: CAD Model (q) has C points, Scene Model
(p) has S points

Ensure: The ratio of the overlay (%)
1: q build kd-tree
2: p be a search point to find neighbor point in kd-

tree q. if the distance from neighbor point to p is
less than t, we can mark the neighbor point.

3: Cumulative the mark point as P
4: The ratio=P

C × 100%

Algorithm 3 The inverse of the ratio of overlap

Require: CAD Model (q) has C points, Scene Model
(p) has S points

Ensure: The inverse of the ratio of the overlay (%)
1: p build KD-tree
2: q be a search point to find neighbor point in kd-

tree p. if the distance from neighbor point to q is
less than t, we can mark the neighbor point.

3: Cumulative the mark point as P
4: The ratio=P

S × 100%

Fig. 3 shows an example of our evaluation and veri-
fication technique. The correct pose result is shown in
Fig. 3(a) with the ratio of overlap about 52%. In other
words, there is a 52% of point region overlap between
the CAD model and the scene model. The inverse of
the ratio of overlap is about 99%, which means that the
scene model points has 99% overlap with CAD model.
Fig. 3(b) shows an example of incorrect 3D pose es-
timation. The red, green, and blue colors represent
the CAD model, scene model, and the corresponding
points from the CAD model to the scene model, respec-
tively. The CAD model points provide only about 29%
overlap with the scene model (i.e., the ratio of overlap),
and the inverse of the ratio of overlap is about 34%.
Based on our evaluation method, the ratio of overlap

Table 1. Pose estimation overlap (in percentage).

Box 1× 2 Lego 2× 4 Lego Joystick
ICP 61.76 8.82 8.82 29.41

ICP-G 98.24 84.12 90.89 84.99

Table 2. Pose estimation computation (in sec).
Box 1× 2 Lego 2× 4 Lego Joystick

ICP 0.22 2.26 2.26 2.16
ICP-G 0.61 7.30 3.17 20.18

is lower if an object is occluded by another. In the
pick-and-place step, the high ratio indicates that the
3D pose estimation is more accurate, and is generally
more suitable for the application.

3 Experiments

This section presents the experimental results, in-
cluding the accuracy of the estimated 3D pose and the
simulation system with a virtual camera and multiple
objects pick-and-place of in the virtual scene. The ex-
perimental environment is shown in Fig. 4. In the
experiments, the objects are segmented perfectly with
our clustering algorithm so the single objects are used
to evaluate the pose estimation method. Four test ob-
jects, Box, 1 × 2 Lego, 2 × 4 Lego and Joystick, as
shown in Fig. 5, are used for our experiments. Figs.
6 and 7 show the CAD models and the scene models
captured by a depth camera, respectively.

As described previously, the result obtained from the
ICP algorithm are affected by the initial position and
orientation, thus we use 34 initial poses of the CAD
model to evaluate our pose estimation technique. The
poses are set up by rotating the CAD model with 30-
330 degrees along the x, y, z axes respectively. The
comparison between two methods, ICP algorithm and
ICP with genetic algorithm (ICP-G), is shown in Ta-
bles 1 and 2 with the overlap ratio and computation
time, respectively. Two types of registration models
are the scene models (as shown in Fig. 7) and the
CAD models (as shown in Fig. 6). The iteration num-
ber of the ICP algorithm is set as 400 if no solution
converges earlier. For the ICP with genetic algorithm,
if the ICP converges then a new pose will be assigned
for further computation.

In the experiments, the Box object is a simple model,
and the accuracies of ICP and ICP-G are 61.76%and
98.24%, respectively. For a more complex object 1× 2
Lego, the accuracy of ICP-G is much better (84.12%
vs. 8.82%) at the cost of much longer computation
time (7.30 sec vs. 2.26 sec). Similar results can be

Figure 4. The experimental environment.

384

(a) Box (b) 1× 2 Lego (c) 2× 4 Lego (d) Joystick

Figure 5. Test objects used in the experiments.

(a) Box (b) 1× 2 Lego (c) 2× 4 Lego (d) Joystick

Figure 6. CAD models of the objects in Fig. 5.

seen for other complex objects, 2 × 4 Lego and Joy-
stick, where ICP-G provides better accuracy but re-
quires more computation.

For the simulation system, we consider a virtual
camera with the perspective projection incorporated
with a manipulator for pick-and-place task [8]. The
mesh-based CAD model of an object is placed in front
of the virtual camera and each pixel of the image (with
the resolution of 2080 × 1552) is back-projected into
the 3D space to find the object points. Consider all of
the back-projected rays, the intersections of the vectors
and surface triangles of the CAD model are calculated
[10].

To simulate a manipulator to complete the pick-and-
place task, we consider a virtual scene consisting of a
5-DOF robot arm, a depth camera and a conveyor belt.
After performing the point cloud data acquisition and
3D pose estimation, the manipulator picks an object
and places it on the conveyor belt according to the de-
rived location and orientation of the object. We design
a five-axis manipulator with controllable rotation an-
gles (R1, R2, R3, R4, R5) and a pair of claw to catch
objects in the virtual environment. The robot arm is
operated according to the functions with rotation angle
parameters.

On the robot arm, two points on the claw are defined
as touch points to manipulate the objects. Let the
midpoint (x, y, z) be the initial position, and the target
position from the estimated pose be (mx,my,mz). In
the experimental setup, the rotation angles R1, R2, R3

and R4 are solved by the genetic algorithm with the
constraint on the range of rotation angle.

4 Conclusions

In this paper we present a vision-based 3D pose esti-
mation technique for random bin picking applications.
The pose estimation results from the conventional ICP-

(a) Box (b) 1× 2 Lego (c) 2× 4 Lego (d) Joystick

Figure 7. Point clouds from a depth camera.

based approach are usually affected by the initial pose
of the object. We propose a technique with the genetic
algorithm to overcome this problem. In our method,
the CAD model of the object is created and converted
to point cloud data. It is then used to register with the
3D scene obtained from a depth camera to derive the
3D pose of the object. The experiments are carried out
with several real objects, and the performance evalua-
tion have demonstrated the feasibility of our approach.

Acknowledgment

The support of this work in part by the Ministry of
Science and Technology of Taiwan under Grant MOST
104-2221-E-194-058-MY2 is gratefully acknowledged.

References

[1] A. Aldoma, M. Vincze, N. Blodow, D. Gossow, S. Gedikli,
R. B. Rusu, and G. Bradski. Cad-model recognition
and 6dof pose estimation using 3d cues. In 2011 IEEE
International Conference on Computer Vision Work-
shops (ICCV Workshops), pages 585–592, Nov 2011.

[2] H. Chui and A. Rangarajan. A new point matching
algorithm for non-rigid registration. Computer Vi-
sion and Image Understanding, 89(23):114 – 141, 2003.
Nonrigid Image Registration.

[3] B. Drost, M. Ulrich, N. Navab, and S. Ilic. Model
globally, match locally: Efficient and robust 3d object
recognition. In 2010 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition,
pages 998–1005, June 2010.

[4] N. Mellado, D. Aiger, and N. J. Mitra. Super 4pcs
fast global pointcloud registration via smart indexing.
Comput. Graph. Forum, 33(5):205–215, Aug. 2014.

[5] M. Mitchell. An Introduction to Genetic Algorithms.
MIT Press, Cambridge, MA, USA, 1998.

[6] R. B. Rusu, N. Blodow, and M. Beetz. Fast point
feature histograms (fpfh) for 3d registration. In 2009
IEEE International Conference on Robotics and Au-
tomation, pages 3212–3217, May 2009.

[7] R. B. Rusu and S. Cousins. 3d is here: Point cloud
library (pcl). In 2011 IEEE International Conference
on Robotics and Automation, pages 1–4, May 2011.

[8] R. B. Rusu, A. Holzbach, M. Beetz, and G. Bradski.
Detecting and segmenting objects for mobile manipu-
lation. In 2009 IEEE 12th International Conference
on Computer Vision Workshops, ICCV Workshops,
pages 47–54, Sept 2009.

[9] J. Serafin and G. Grisetti. Nicp: Dense normal based
point cloud registration. In 2015 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), pages 742–749, Sept 2015.

[10] O. Tropp, A. Tal, and I. Shimshoni. A fast triangle to
triangle intersection test for collision detection. Com-
puter Animation and Virtual Worlds, 17(5):527–535,
2006.

[11] X. Wang, H. Zhang, and G. Peng. 3-dof point cloud
registration using congruent triangles. In 2015 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems (IROS), pages 1943–1948, Sept 2015.

[12] C. Zach, A. Penate-Sanchez, and M. T. Pham. A dy-
namic programming approach for fast and robust ob-
ject pose recognition from range images. In 2015 IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 196–203, June 2015.

385

