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Abstract

3D ball tracking is of great significance to ping-pong
game analysis, which can be utilized to applications
such as TV content and tactic analysis. To achieve
a high success rate in ping-pong ball tracking, the main
problems are the lack of unique features and the com-
plexity of background, which make it difficult to distin-
guish the ball from similar noises. This paper proposes
a ball-like observation model and a multi-peak distri-
bution estimation to improve accuracy. For the ball-
like observation model, we utilize gradient feature from
the edge of upper semicircle to construct a histogram,
besides, ball-size likelihood is proposed to deal with the
situation when noises are different in size with the ball.
The multi-peak distribution estimation aims at obtain-
ing a precise ball position in case the particles’ weight
distribution has multiple peaks. Experiments are based
on ping-pong videos recorded in an official match from
4 perspectives, which in total have 122 hit cases with
2 pairs of players. The tracking success rate finally
reaches 99.33%.

1 Introduction

Due to the development of computer vision, more
people are interested in ping-pong game analysis,
which is of great commercial value. 3D ball tracking
plays a crucial role in ping-pong game analysis, which
can obtain 3D ball position and velocity for applica-
tions such as TV content and tactic analysis. There-
fore, our research aims at improving the success rate
of 3D ping-pong ball tracking in real and complex con-
ditions for ping-pong game analysis.

The lack of unique features of the ping-pong ball and
the complex background in real conditions are the main
problems that affect the tracking accuracy. In formal
games such as the Olympic Games, the ping-pong ball
is in white, which has less unique color features and
is easily affected by luminance and background. The
complex background of the video bringing a mass of
similar noises also makes it difficult to track the ball
accurately. Moreover, the occlusion problem, the high
speed, the abrupt motion change and the camera cali-
bration error increase the difficulty as well.

There are several works aiming at 3D ball tracking
in recent years. The Hawk-Eye system [1] is applied
in real matches to obtain the ball’s trajectory these
years. However, this system needs multiple high-speed
cameras placed at high locations in order to provide
high-quality videos against a simple background of the
court, which makes it expensive and limited. As for [2]
and [3], although they achieved some degrees of suc-
cess in detecting or tracking a ball, but their scenes of

the test videos are relatively simple. While [4]-[7] are
tested in complex situations, but their tracking target-
s such as volleyball and orange ping-pong ball, have
more unique color features.
Some of the works have already solved some difficult

problems. Multiple features such as color and moving
features are applied in [4]-[7] for ball tracking. To solve
the occlusion problem, [1]-[7] use multiple cameras in
different perspectives in order to capture the ball in ev-
ery frames. In [6], an anti-occlusion observation model
is proposed to solve the occlusion problem by remov-
ing the lowest likelihood of all the cameras. [7] has put
forward a system model with mixture system noises in
order to adapt the high speed and the abrupt motion
change in 3D tennis ball tracking.
Some works use the gradient feature and the size

feature to overcome the problem of the lack of unique
features. The observation model of [5] only utilizes the
magnitude of the gradient to judge the circle edge of
the ball, which leads to a great deal of noises on com-
plex objects. In [4], canny edge detection and Hough
transform are used to detect a circle, which cost a large
computation. The ball-size feature is also applied by
[4] in order to reduce candidate circles with different
radius. However, owing to [5], an adaptive radius of
the tracking window can be obtained to decide each
particle’s ROI (region of interest) in our work. The
estimation models of the particle filter in [5]-[7] cannot
obtain a precise result when the particles’ weight dis-
tribution has multiple peaks, which is a very serious
problem to be solved.
This paper proposes the upper semicircle likelihood

for a more appropriate use of the gradient feature in
ping-pong ball tracking, which utilizes both the mag-
nitude and the orientation of the gradient on the upper
semicircle edge. And the ball-size feature is proposed
to eliminate similar noises caused by complex back-
ground using the ball-size likelihood. Meanwhile, the
multi-peak distribution estimation method is proposed
to obtain a precise ball position when the particles’
weight distribution has multiple peaks.
This paper is arranged as follows. Section 2 and sec-

tion 3 cover the detail of the 3D ball tracking method
and the proposals, and the experiment and the conclu-
sion are in section 3 and section 4.

2 3D Ball Tracking Method

The Multi-view 3D ball tracking method using parti-
cle filter is implemented in our research. By using syn-
chronous videos captured from 4 perspectives, the 3D
information can be obtained and the occlusion problem
can be solved to some extent. The camera calibration
method we choose is from Hartley’s work [8].

15th IAPR International Conference on Machine Vision Applications (MVA)
Nagoya University, Nagoya, Japan, May 8-12, 2017.

© 2017 MVA Organization

11-05

360



Figure 1. Overall structure of 3D ball tracking.

The overall structure of our framework is shown in
Fig.1. The state vector is defined as below, which con-
tains the 3D position of the ping-pong ball at discrete
time k.

Xk = [xk, yk, zk], k ∈ N (1)

In the system model, the time evolution of the state
vector is given with a mixture system noise proposed
in [7] which is adaptive to different motions.

In the space projection, the 3D position of particles
are projected to 4 image planes, while the tracking
window[5] is defined to be the ROI (region of interest)
for each particles which is based on the ball’s projected
radius.

Our first proposal is proposed in the observation
model. We define the observation of camera m as Imk
at discrete time k. Then the likelihood L(X(i)

k ; Imk ) of
the ith particle is calculated based on the ball-like ob-
servation model.

For the state estimation, we propose the second pro-
posal named multi-peak distribution estimation, which
estimates the state according to more than the poste-
rior distribution, as well as the influence from similar
noises.

3 Proposals

3.1 Ball-like observation model

The Ball-like observation model totally includes 4
kinds of likelihood. One particle finally gets its likeli-
hood of 1 perspective by the equation below.

L(X(i)
k ; Imk ) =Lcolor(X(i)

k ; Imk ) · Lmove(X(i)
k ; Imk )

·Lcircle(X(i)
k ; Imk ) · Lsize(X(i)

k ; Imk )
(2)

The upper semicircle likelihood Lcircle(X(i)
k ; Imk ) and

the ball-size likelihood Lsize(X(i)
k ; Imk ) are described in

detail in this section.

3.1.1 Upper semicircle likelihood

In the ball tracking, the circle-shape is an obvious
feature to distinguish from noises in the complex back-
ground, which is robust to rotation problem as well.
However, in ping-pong ball tracking, the ball’s gradient
information on the lower semicircle edge is easily affect-
ed by luminance because of its white color. Therefore,
we choose to use the upper semicircle edge to represent
its gradient feature.

To calculate the possibility that the tracking window
is located at a circle object, the gradient histogram of
the pixels on the upper semicircle edge is constructed.
We use the orientation of the gradient to decide the bin
of the histogram and divide it into 48 bins. As for the
orientation which is between 2 bins, its corresponding
magnitude is divided to 2 parts based on the different
weight and is respectively added to 2 bins. So the
histogram h = hu

i u=1,2,...,48 can be calculated as below.

hu
i = λ

P∑
p=1

|Gi(xp, yp)|δ(θ̂i(xp, yp)− u) (3)

where θ̂i(xp, yp) is the quantized orientation and
|Gi(xp, yp)| is the magnitude. P is the number of pix-
els in the ROI (region of interest). λ is a normalization
factor and δ(·) is the Dirac delta function.
After generating the histogram for each particle, the

distance between the particle’s histogram and the tem-
plate histogram ~ is calculated based on the Bhat-
tacharyya coefficient BC(hu

i , ~).

Lcircle(X(i)
k ; Imk ) =

1

σ
√
2π

exp(−1−BC(hu
i , ~)

2σ2
) (4)

3.1.2 Ball-size likelihood

Most noises have high likelihood in color and moving
features, such as the player’s arm and the label on the
player’s uniform. Fortunately, despite the high simi-
larity with the ball, the size is another feature to elim-
inate these ball-like noises. Under this circumstance,
the ball-size likelihood is designed to decrease the nois-
es’ likelihood.
The original ROI (region of interest) is a circle whose

radius is the actual radius of the ball in image plane.
Thus, it is suitable for the HSV histogram construc-
tion and the background subtraction since other noises
is removed from consideration. When it comes to en-
larging the ROI, the degree of the enlargement is set
as 1.5 times of the original radius and the circle shape
of the ROI is changed into a square shape. The num-
ber of pixels in the EROI (enlarged ROI) is defined as
SEROI .
The size ratio calculation starts with a scan in a

color filter and a moving filter for every pixel. In Fig.2,
the method to obtain the “ball-like mask” is clearly
expressed. Once getting the ball-like mask, counting

Figure 2. Ball-like mask.
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the total number of the valued pixels (Sball−like) in the
EROI based on this mask is proceeded.

The size ratio R is evaluated by the below equation.

R =
Sball−like

SEROI
(5)

For the real ball-size ratio rb, its value is the orig-
inal ROI area divided by SEROI , which means that
the EROI totally covers the whole ball. At this ra-
tio, the ball-size likelihood definitely reaches the max-
imum. The function that transfer the size ratio R to
the ball-size likelihood is shown as below.

Lsize(X(i)
k ; Imk ) =

{
RC R < rb − 0.1
1 |R− rb| ≤ 0.1

1−RC R > rb − 0.1
(6)

where C is a constant decided by the enlarging degree
of the EROI. To sum up, the farther the size ratio from
the rb, the lower the ball-size likelihood.

3.2 Multi-peak distribution estimation

For the situation that some similar noises exist in
the complex background, the particles’ weight distri-
bution based on the observation model may have mul-
tiple peaks, as Fig.3 shows. As for the conventional
estimation method in [5]-[7], the weighted average po-
sition of all the particles P I

wa is calculated to be the
target position, which is imprecise as we can conclude
from Fig.3.

The multi-peak distribution estimation method is
proposed to obtain a precise ball position under this
circumstance. The main idea is that we divide parti-
cles into different groups based on their positions in
order to separate the target with noises, and then we
judge which group is the real target. Thus, this method
includes a particles grouping method and a best group
judgment.

After resampling, we can get several particles with
relatively higher weight. These particles are scanned
and divided into multiple groups according to the rules
below.

(1) If the distance between 2 particles is smaller than
the given threshold, they are assumed to belong
to the same group.

(2) If a particle doesn’t belong to any existed group,
a new group is added based on this particle.

(3) If a particle belongs to more than 1 groups, these
groups are assumed as one group.

Figure 3. Multi-peak distribution estimation.

After grouping particles, the weighted average posi-
tion P g

wa of group Gg
k is calculated.

To judge which group is the real target, we calculate
the “best-group likelihood” based on the particles like-
lihood and the quantity of the group members. Firstly,

we calculate the distance d
(i)
g between the P g

wa and the
particles belonging to Gg

k. In our conclusion, the par-
ticle which is farther from the P g

wa should have less
influence on the judgment, so that the best-group like-
lihood is defined as below.

Lbg(Gg
k) =

i<sg∑
i=0

κ(i)
g · L(X(i)

k ; Ik) (7)

where sg is the total number of the particles in Gg
k.

Parameter κ
(i)
g is designed as below to reduce the in-

fluence from the particles which are farther from the
P g
wa.

κ(i)
g =

e−d(i)
g − e−rg

1− e−rg
(8)

where rg is the radius of Gg
k.

Afterwards, the group with the highest best-group
likelihood is judged as the best one. By using this
judging method, the effect of the particles which are
closer to the P g

wa is enlarged, and the influence from
the quantity of the group members is reduced, in other
words, not the more particles, the higher likelihood.
Finally, the weighted average position of the best

group is treated as the ball’s position, which is rela-
tively more credible than the result of the conventional
estimation method.

4 Experiment

4.1 Experiment sequences

The experiment is based on the videos recorded in an
official ping-pong match (2016 Kanto University Stu-
dent Ping-pong Championship) by 4 cameras located
at 4 corners of the court. The video’s resolution is
1920×1080, the frame rate is 60 fps and the cameras’
shutter speed is set as 1000 per second. We randomly
cut 15 sequences for each perspective from the videos,
as Fig.4 shows, which in total include 3913 frames with
2 pairs of players. And these sequences contain 122 hit
cases including smash, chop, serve and so on.

Figure 4. Example frames.

4.2 Evaluation method

To evaluate the performance of our proposals, we
give a definition of success frame that the projected
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tracking window of the 3D position should exactly cov-
er or cover part of the ball in at least 2 perspectives of
the frame. This is because some error exists to affect
the precision, which is caused by camera calibration.
The calculation of the tracking success rate is shown
as below.

Success rate =

∑
Success frame

Total frames
× 100% (9)

4.3 Experimental result and analysis

For comparison, the contributions of our 2 proposal-
s are respectively evaluated. The experimental results
are shown in Table 1, and some short 3D ball trajec-
tory results plotted by the 3D ball position are shown
in Fig.5. As a conclusion, our work achieves 99.33%
tracking success rate and gains 67.49% improvement
compared with conventional frame work, which indi-
cates that our proposals are effective in 3D ping-pong
ball tracking.

However, when the ball is occluded in 2 perspectives,
similar noises still have some bad effect on the tracking
result sometimes, as shown in the third trajectory in
Fig.5. I think this kind of problems may be solved by
using more video perspectives.

Table 1. Experimental results.

Experiment work Success frame Success rate
Conventional
frame work

1246 31.84%

P11 3796 97.01%
P1+P22 3897 99.33%

1P1: Ball-like observation model
2P2: Multi-peak distribution estimation

Figure 5. 3D ball trajectory.

5 Conclusion

This paper proposes a ball-like observation model
and a multi-peak distribution estimation method, aim-
ing at solving the problems in 3D ping-pong ball track-
ing, such as the lack of unique features and the com-
plexity of background. The first proposal utilizes the
gradient feature from the edge of upper semicircle to
construct a histogram in the upper semicircle likeli-
hood, besides, the ball-size likelihood is proposed to
eliminate the similar noises which are different in the
size with the ball. The multi-peak distribution estima-
tion aims at obtaining a precise ball position in case the
particles’ weight distribution has multiple peaks. The
experiment is based on 15 sequences shot in an official
match with 4 perspectives. The tracking success rate
reaches 99.33% and gains 67.49% improvement com-
pared to the conventional frame work.
In the future, we plan to accelerate our 3D ball track-

ing method using GPU to meet the demand for real-
time applications. And we may need to do some mod-
ifications to make it more hardware-friendly.
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