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Abstract

Ever changing appearance of the targets in real-
world scenarios mandates a discriminative tracker to
update its classifier(s) on-the-fly, a process during
which the model could be updated with irrelevant/noisy
data, causing the tracker to drift away from the tar-
get over time. The updates should be frequent enough
to reflect the latest changes in the target’s appearance,
whereas the tracker should keep the memory of previous
templates to recover from occlusions or temporal vari-
ations in appearance of the target (aka the plasticity-
stability dilemma). In this study, we proposed a com-
mittee of classifiers with different memory spans, to
address the appearance changes with various durations.
An active learning scheme selects the most disputed
samples and queries their labels from a less-frequently
updated long-term memory oracle. This combination
of memory spans balances the plasticity-stability equi-
librium as demonstrated by the experiments and pro-
vides a comparable performance to the state-of-the-art
trackers with a relatively simple implementation.

1 Introduction

Discriminative tracking is the task of separating the
target object from its background [1, 2, 3, 4, 5, 6,
7, 8, 9], which is usually in contrast with generative
tracking that focuses on the target itself [10]. Numer-
ous approaches have been proposed in the discrimi-
native tracking framework ranging from simple object
detector-based methods [11] to context-aware trackers
[4], discriminative correlation filters [12], and ensemble
tracking [2, 9].
Ensemble tracking employs a committee of (inde-

pendent) classifiers to express their ideas about target
location or every single sample of data. Such meth-
ods select the best classifier to represent the target
[7], combine the long-term and short-term memory by
fusing different trackers [8], or re-evaluate classifier’s
labels with auxiliary detectors [6].
A key component for achieving a robust longterm

tracking is the tracker’s capability of updating its inter-
nal representation of targets (the appearance model)
to changing conditions. This update should accom-
modate the rapid changes in the target’s shape and
appearance, however, an unsupervised rapid update
scheme renders the tracker prone to be updated with
misclassified data samples. On the other hand, tempo-
ral appearance changes and occlusions, may drift the
target model away quickly if the update frequency is
too high. In such cases, the trackers may need to
remember the only user-annotated frame (t = 1) or
some early tracking results to recover from such situa-
tion. The need to simultaneous fulfillment of these con-
tradicting goals of rapid learning and stable memory
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Figure 1. Schematic of proposed tracker, Col-
lective Memory Tracker (CMT). In this tracker,
the samples are labeled by a novel labeler unit,
which uses a committee of classifiers with differ-
ent short-term memory spans, a long-term mem-
ory classifier, and an active learner to balance the
interaction of these two memories.

may be called the “stability-plasticity dilemma”[13].
To address this challenge, different approaches were
proposed. TLD [6] utilizes two auxiliary detectors (for
false-positive and false-negatives) to verify the labeling
process, STRUCK [5] avoids the labeling process to al-
leviate the model drift problem, MEEM [7] proposed a
restoration mechanism to roll-back the faulty updates,
and MUSTer [8] utilizes a bio-inspired memory model
to combine short and long-term memories.
In this study, we propose an intuitive way to in-

corporate different memories into a tracker and bal-
ance the stability-plasticity equilibrium. The proposed
tracker utilizes the shared pool of knowledge and infor-
mation in the memories of two or more members of a
committee to label a data sample. Beside having this
collective memory to handle short-term target varia-
tions, another long-term memory classifier is used to
enable the tracker to handle temporal variations and
occlusions, and re-identify the target in the less-likely
scenario of target loss. To balance these two memo-
ries, an active learning mechanism is proposed in this
tracker, in which, the most disputed samples in the
short-memory (thus the most informative ones), are
queried from the long-term memory module.
Following this, the proposed method, Collective

Memory Tracker (CMT) is elaborated and compared
against the best-performing discriminative trackers on
a large public dataset. The findings reveal that CMT’s
performance is comparable to the state-of-the-art, yet
this tracker could be enhanced in various ways to
achieve higher performances.
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2 Collective Memory Tracker (CMT)

In this section, an adaptive discriminative tracker is
formulated and later expanded to ensemble trackers.
Built on this foundation, the proposed method, CMT,
is elaborated.

2.1 Discriminative Tracking

To determine the position of the target pt at time
t ∈ {1, . . . , T}, a disciminative tracker strives to find
a transformation yt relative to the target’s last known
position pt−1, where pt = pt−1 ◦ yt. The transfor-
mation yt ∈ Y is a member of transformation space
Y, which is commonly induced by 2D translations, but
could be generalized to more sophisticated spaces (e.g.
2D affine transformations space) without the loss of
generality. In addition, the motion models, context [4],
and generated confidence maps [14] may be considered
in selecting samples.
A common approach to estimate yt is by generating

a set of n different samples {y1
t , . . . ,y

n
t }, and aggre-

gating them based on a utility function f(yj
t ), i.e.,

yt = g(y1
t , . . . ,y

n
t , f(y

1
t ), . . . , f(y

1
t )). (1)

Each sample y
j
t indicates the location pt−1 ◦ y

j
t in the

video frame It, where the image patch x
pt−1◦y

j
t

t ∈ Xt is
contained. The samples are evaluated by the tracker’s
classifier, θt, which makes its predictions via its classi-
fication confidence function h : Xt → R. In traditional
tracking-by-detection algorithms this confidence score
serves as the utility for eq(1),

s
j
t = h(x

pt−1◦y
j
t

t |θt). (2)

from which the label of the sample j can be inferred,

ℓ
j
t = sign(sjt ). (3)

In turn, all of the samples and their labels are used to
re-train the classifier’s model θt,

θt+1 = u(θt,Xt−∆:t,Lt−∆:t) (4)

in which Lt denotes the set of labels of the samples
Xt, u(.) is the model update function, and the ∆ is the
history that a tracker considers in it re-training.
A typical discriminative tracker tries to maximize

the response of the classifier, i.e., (1) becomes

ŷt = argmax
y
j
t∈Y

(f(yj
t )), (5)

however other methods such as weighted averaging
of the transfomations are proposed in the literature
[9]. Furthermore, many of the adaptive trackers utilize
online-learning classifiers [5, 10] in which only the data
from the recent frame (∆ = 1) is used.

2.2 Ensemble Discriminative Tracking

An ensemble discriminative tracker employs a set
of classifiers instead of one. These classifiers, here-
after called committee, are represented by C =

Algorithm 1: Collective Memory Tracker (CMT)

input : Target position in last frame pt−1

output: Target position in current frame pt

for j ← 1 to n do

Sample transformation y
j
t ∼ N (pt,Σsearch)

Calculate committee score s
j
t (eq(6))

Label the sample ℓ
j
t (eq(9))

Archive 〈t, sjt , ℓ
j
t 〉 in D

for c← 1 to C do

Retrain θ
(c)
t by D considering ∆(c) (eq(8))

if mod(t,∆(o)) = 0 then update the oracle
Retrain θ(o) considering all samples of D

Estimate transformation ŷt (eq(10))
Calculate target position pt = pt−1 ◦ ŷt

{θ(1), . . . , θ(C)}, and are typically homogeneous and in-
dependent. Popular ensemble trackers utilize the ma-
jority voting of the committee as their utility function,

s
j
t =

C
∑

c=1

sign
(

h(x
pt−1◦y

j
t

t |θ
(c)
t )

)

. (6)

and eq(3) is used to label the samples. Finally, the
model is updated for each classifier independently,

θ
(c)
t+1 = u(θ

(c)
t ,Xt−∆:t,Lt−∆:t) (7)

meaning that all of the committee members are trained
with a similar set of samples and a common label for
them. On the other hand, in co-tracking algorithms
(such as [14]), different classifiers have different sample

set X
(c′)
t and label them based on their own models

(L
(c)
t ).

2.3 Proposed Method

The proposed algorithm, Collective Memory Tracker
(CMT), is based on the premise that different memory
spans throughout the tracking, result in different clas-
sifiers. By leveraging different classifiers induced by
different depth of the memory, this tracker harness the
power of collective memory to balance the stability-
plasticity equilibrium, i.e., this mixture of memory
spans strives to balance the adaptation power of the
tracker to recent changes of the target, with its mem-
ory of its initial template and earlier tracking results.
The different memory spans, ∆(c), for the committee
members (1 ≤ ∆(c) ≤ T ) promote the diversity of the
committee by providing different training data,

θ
(c)
t+1 = u(θ

(c)
t ,Xt−∆(c):t,Lt−∆(c):t) (8)

It is natural that rapid appearance changes, occlu-
sions, and permanent target variations cause the in-
crease of the disagreement about some samples. To
address this issue, inspired by query-by-committee [15]
we select the most disputed samples in each frame
(with s

j
t closer to zero), and label them using an auxil-

iary classifier (θ(o)) with a long-term memory, hereafter
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Figure 2. Quantitative performance comparison
of the proposed tracker, CMT, with the state-of-
the-art trackers using success plot and its AUC.

called the oracle. Therefore, eq(3) can be written as

ℓ
j
t =











+1 s
j
t > τu

−1 s
j
t < τl

sign(h(xpt−1◦y
i
t)|θ

(o)
t ) otherwise

(9)

where τu and τl are thresholds with which the tracker
controls its reliance on the oracle. To estimate the next
target location, the patch that maximizes the sum of
raw responses of the committee is used

ŷt = argmax
y
j
t∈Y

( C
∑

c=1

h(x
pt−1◦y

j
t

t |θ
(c)
t )

)

. (10)

Algorithm 1 summarizes the proposed tracker.
As illustrated in Figure 1, the samples along with

their labels are stored in a repository D, and the com-
mittee members are trained with the samples in their
memory span every frame. In addition, the oracle is
retrained every ∆(o) frames with all the samples, that
renders the tracker robust against the temporal vari-
ations of target appearance and occlusions. The the
memory spans ∆(c) = {2, 3, 5, 7, 11} and ∆(o) = 15,
thresholds τu = 0.39 and τl = −0.43, and the search
radius Σsearch = 6 pixels are tuned by cross-validation.
In this study, we used homogeneous classifiers

(KNNs) for the committee members with the simi-
lar set of features (HOG+HOC), thus, the features for
each sample is calculated once but classified C times
by committee members. This design also facilitates the
storage of the samples in D, and speed up classifier re-
training by reusing the computations for trackers with
shorter memory spans for those with longer ones. The
oracle is a modified part-based classifier based on [11].

3 Experiments

To establish a fair comparison with the state-of-the-
art, we select several discriminative trackers with ac-
tive memory management: MUSTer [8], MEEM [7],
STRUCK [5], and TLD [6]. We perform a benchmark
on the 50 videos of the Object Tracking Benchmark
[16], along with partial subsets of the dataset with
a distinguishing attribute to evaluate the tracker per-
formance under different situations. These attributes
are illumination variation (IV ), scale variation (SV ),

Figure 3. Quantitative localization accuracy com-
parison of CMT, with the state-of-the-art track-
ers using success plot and its AUC.

occlusions (OCC ), deformation (DEF ), motion blur
(MB), fast motion (FM ), in-plane-rotation (IPR), out-
of-plane rotation (OPR), out-of-view (OV ), low res-
olution (LR), and background clutter (BC ), defined
based on the biggest challenges that a tracker may face
throughout tracking. CMT achieved the speed of 21.97
fps on a Pentium IV PC @ 3.5 GHz and a Matlab/C++
implementation with no code optimization.
For this comparison, we have used success and pre-

cision plots, where their area under curve provides a
robust metric for comparing tracker performances [16].

The success plot depicted in Figure 2, demon-
strates that CMT (proposed) and MUSTer outper-
formed other trackers considering all of the videos.
Table 1 provides a detailed analysis of the trackers
based on the aforementioned attributes, where in all
categories these two trackers dominate the other track-
ers. This leading performance could be attributed to
the effective methods CMT and MUSTer employ to
balance the stability-plasticity equilibrium. This su-
perior performance is especially evident in the cate-
gories in which the appearance of the target under-
went transformations (IV, DEF, SV, IPR, and OPR)
or was partially invisible to the camera (OCC and
OV ). Whilst Table 1 shows a comparable performance
between CMT and MUSTer, the precision plot (Figure
3) illustrates that CMT is slightly more accurate than
MUSTer, though the difference is not significant.

Table 1. Quantitative evaluation of trackers un-
der different visual tracking challenges using
AUC of success plot. The best performance for
each attribute is shown in bold.

Attribute TLD STRK MEEM MUSTer Ours

IV 0.48 0.53 0.62 0.73 0.73

DEF 0.38 0.51 0.62 0.69 0.69

OCC 0.46 0.50 0.61 0.69 0.71

SV 0.49 0.51 0.58 0.71 0.72

IPR 0.50 0.54 0.58 0.69 0.74

OPR 0.48 0.53 0.62 0.70 0.73

OV 0.54 0.52 0.68 0.73 0.71
LR 0.36 0.33 0.43 0.50 0.55

BC 0.39 0.52 0.67 0.72 0.69
FM 0.45 0.52 0.65 0.65 0.70

MB 0.41 0.47 0.63 0.65 0.65

ALL 0.49 0.55 0.62 0.72 0.72
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(a) Tracking results of sequence FaceOcc2 and Walking2 with severe occlusions

(b) Tracking results of sequence Singer1, CarDark and Shaking with drastic illumination changes

(c) Tracking results of sequence Basketball and Soccer with deformation

Figure 4. Sample tracking results of evaluated algorithms on several challenging video sequences, in these
sequences the red box depicts the CMT against other trackers (blue). The ground truth is illustrated with
yellow dashed box. The results are available in the http://ishiilab.jp/member/meshgi-k/cmt.html.

4 Conclusion

This study proposed to employ a committee of clas-
sifiers with different memory spans to epitomize a col-
lective memory. Different memory spans diversify the
committee members, which boost the performance of
the resulting ensemble tracker. Furthermore, it en-
ables the use of deterministic classifiers in the query-
by-committee learning framework. This active learn-
ing framework efficiently detects the most informative
samples (i.e., the most disputed ones in this study)
and query their labels from a long-term memory or-
acle. The balance in stability-plasticity equilibrium is
achieved by the combination of several short-term clas-
sifiers with a long-term classifier, and managing their
interaction with an active learning mechanism.
The proposed tracker, CMT, outperforms tradi-

tional discriminative trackers and achieve a compa-
rable performance with MUSTer that utilizes hybrid
memory schemes to bolster the importance of this as-
pect of tracker designs. Results of the tracking on a
large video dataset revealed that this method is effec-
tive in handling various tracking challenges especially
occlusions and target appearance changes.
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