
Detection of Self Intersection in Synthetic Hand Pose Generators

Shome Subhra Das
CVAI lab, Electrical Engineering Department

Indian Institute of Science, Bangalore
shome@ee.iisc.ernet.in

Abstract

Synthetic hand pose data has been frequently used
in vision based hand gesture recognition. However ex-
isting synthetic hand pose generators are not able to
detect intersection between various hand parts and can
synthesize self intersecting poses. Using such data may
lead to learning wrong models. We propose a method to
eliminate self intersecting synthetic hand poses by ac-
curately detecting intersections between various hand
parts. We model each hand part as a convex hull and
calculate pairwise distance between the parts, labeling
any pair with a negative distance as intersecting. A
hand pose with at least one pair of intersecting parts
is labeled as self intersecting. We show experimentally
that our method is very accurate and performs better
than existing techniques. We also show that it is fast
enough for offline data generation.

1 Introduction

Vision based hand gesture recognition methods ex-
tensively use machine learning algorithms which re-
quire high volumes of training data. Capturing such
data manually is a very tedious job. Hence synthetic
(rendered) data has been used in hand gesture related
research [9, 10, 11, 17, 20, 21, 22, 14].

Linear blend skinning (LBS) is a popular technique
for rendering articulated objects. Currently there ex-
ists two synthetic hand generators namely Libhand
[15] and Handgenerator[7] that can generate RGB and
depth images of all possible hand poses. Both use LBS
to model the human hand. However both hand render-
ers suffer from a limitation that there is no automatic
and accurate way to disable the generation of self inter-
secting hand poses. Fig. 1a and Fig. 1b show examples
of self intersecting hand poses synthesized by LibHand
and HandGenerator respectively.

(a) By LibHand (b) By HandGenerator

Figure 1: Self intersecting hand pose samples

In this paper we propose a method to accurately de-
tect self intersections in synthetic hand pose data gen-
erated using LBS technique. We model all hand parts
using convex hulls and find the penetration depth be-
tween these convex hulls using GJK-EPA algorithm

([4], [23]). We label pairs of hand parts as intersect-
ing if they have negative penetration depth. We show
experimentally that our method is very accurate and
better than existing techniques. We also show that our
method is fast enough for offline data generation.

2 Related Work

There exist three broad methods to eliminate self
intersecting poses:

• By imposing static and dynamic hand joint angle
constraints based on anatomical studies.

• Using geometric primitives to represent fingers and
3D geometry to compute inter finger overlap.

• Using Rigid body dynamics with pairwise constraints
between hand parts to avoid self intersection.

Algorithm Method Application

Oikonomidis et al. [10],
Schroder et al. [16]

JA
Hand

Tracking
Liang et al. [12] JA Hand Parsing
Choi et al. [13],
Zhou et al. [24]

JA
Hand Pose
estimation

Supancic III et al. [18] JA
Hand Pose

data creation

Tompson et al. [22] GP
Hand Pose
Estimation

Tagliasacchi et al. [25] GP
Hand

Tracking

Melax et al. [6] RBD
Hand

Tracking

Krejov et al. [5] RBD
Hand Pose
Estimation

Table 1: Existing work to remove self intersecting
poses. JA: Joint angle based, GP: Geometrical Primi-
tives based, RBD: Rigid body dynamics based.

Joint angle constraints hold true for average human
hand and are not accurate for every hand shape. Meth-
ods using simplified geometrical models do not accu-
rately model the hand and hence their calculations are
not accurate either. Rigid body dynamics along with
constraints on velocity, impact forces has been used
for avoiding self intersection. However it is not suit-
able for data generation as multiple sequential frames
are needed for velocity, force computations.

We show experimentally that the proposed method
works very accurately in all scenarious including all
cases where existing methods fail.

3 Prerequisite Concepts

How Synthetic Hand pose generators Work:
Synthetic Hand pose generating softwares (Fig. 2) take

15th IAPR International Conference on Machine Vision Applications (MVA)
Nagoya University, Nagoya, Japan, May 8-12, 2017.

© 2017 MVA Organization

09-31

328

GUI

Joint
Angles,
Camera
Location

and
Orien-
tation

Joint
Trans-
form3D

Model

LBS
Vertex
Buffer

Project
to 2D

RGB
and

Depth
Image

V

Synthetic Pose Generator

Rendering Engine

θ

Input

Modified
Skeleton

Skeleton

(V, T)

(V, T)

C
Output

Figure 2: General schematic of Synthetic Pose genera-
tor: V = Vertex locations, T = Texture Coordinates, C
= Camera Location and Orientation, θ = Joint angles.

hand joint angles along with the location and orienta-
tion of a virtual camera as input from a GUI and ren-
der synthetic RGB and depth images of various hand
poses. A 3D hand model consisting of mesh vertices, a
skeleton and a skin texture image (Fig. 3a) is loaded
into the rendering engine. The 3D vertex locations and
texture coordinates are stored in the vertex buffer. By
applying LBS technique, the 3D vertex locations of the
mesh are modified to match the current skeleton config-
uration as set by the input joint angles. The projection
matrix is applied on the modified vertex locations to
get the 2D rendered image. The color on the image is
set using the foreground vertex colors from the texture
image taking care of the lighting conditions.
Finding Distance Between Convex Hulls:

Boolean GJK algorithm [8] detects if two convex hulls
intersect. Expanding Polytope Algorithm (EPA) [23]
finds the distance between two intersecting convex
hulls. GJK along with EPA is often used in computer
game design for collision detection.

4 Proposed Method

We propose a method to accurately detect intersec-
tions between various hand parts of a synthesized hand
pose. The hand mesh and the segmented texture image
(Fig. 3b) are loaded into the rendering engine (Fig.
2). From the vertex buffer of the rendering engine we
extract the 3D location of the vertices (V) and the cor-
responding texture coordinates (T) after the locations
of vertices have been modified according to the input
joint angles (using LBS). We segment the vertices us-
ing color label corresponding to each part and find the
convex hulls for all the segmented hand parts (Fig. 4).
The penetration depth between these convex hulls are
calculated using GJK-EPA algorithm. We label pairs
of hand parts as intersecting if they have negative pen-
etration depth. The penetration depth is thresholded
to allow small compression of hand parts. A hand pose

is declared as self intersecting if any two non adjacent
hand parts intersect each other. Once self-intersection
is ruled out, the skin colored texture image is used to
generate hand pose data.

Algorithm 1 Self Intersection Detection algorithm

1: procedure Detect Self Intersection
2: Extract vertex locations from vertex buffer.
3: Assign color to each vertex by indexing the tex-

ture image with the texture coordinates.
4: Segment the vertices based on color.
5: Fit Convex hulls to all sets of segmented

vertices.
6: Using GJK-EPA algorithm compute pairwise

distance between all convex hulls (hand parts).
7: Label any pair as intersecting if the distance

between them is negative and lesser than a
threshold

8: Label the hand pose as self intersecting if there
is any pair of intersecting parts

9: end procedure

(a) Skin Texture (b) Segmented Texture

Figure 3: Texture Images

5 Experimental Results:

Setup: We used the Hand renderer code at https:
//github.com/jsupancic/libhand-public.
We modified the code to extract the vertices and
texture coordinates from the vertex buffer. Convex
hull computation and pairwise distance calculation
(using GJK-EPA) were done using the Bullet Physics
Library [3]. We use a threshold of 2 mm on the
penetration depth to allow for small compressions of
the hand parts. Nerve endings in the finger are found
at a depth of 0.7 mm to 1.0 mm below the skin surface
([19]). So 2 mm is the maximum penetration before
finger-finger intersection is perceivable.

Results: We captured various intersecting poses by
varying the number of intersecting hand parts and the
level of penetration from shallow to deep. Table 3
shows that the detection of self intersections by our
method was accurate in absolute terms in all cases.

To compare with joint angle method we generate
test cases which satisfy the limits from [2] but result
to self intersections. Such cases are not detectable by
the joint angle method. Table 4 shows that our method
performs accurately with all the intersection cases that
were not detected by the joint angle limit method.

To compare with methods using geometric primi-
tives we create test cases which are very close to self
intersection but are not intersecting (as in Fig. 5).
We calculated the penetration as specified in [22] and

329

Figure 4: Dataflow along our pipeline: The first image is the hand rendered by LibHand, in which the tip of the
thumb and the forefinger intersect. The second image represents the segmented pointcloud while the third image
displays the convex hulls of the segmented parts. The table at the end shows the pairwise distance calculation
and intersection detection using GJK-EPA algorithm. The hand parts are numbered from 0 to 17 as shown.

(a) Hand Pose 1 (b) Hand Pose 2

Figure 5: Samples of Non Intersecting test cases for
comparison with Geometric primitive based methods.

Method
Part

Model
Penetration

Fig. 5a
Penetration

Fig. 5b

[22] Sphere 2500 mm3 270 mm3

[25] Cylinder 632 mm2 3 mm2

Ours LBS
No

penetration
No

penetration

Table 2: Poses (ref Fig.5a and Fig.5b) where methods
based on geometric primitive fail while our’s works as
expected.

[25]. Table 2 shows that methods based on geometric
primitives give incorrect penetration detections in both
cases while our method accurately determines them as
non intersecting.

Comparison with Rigid body dynamics based meth-
ods is not applicable as they require multiple sequential
poses to compute velocity, force while data generation
process needs each pose data to be independent of the
rest.

On an i7-3770K PC our method took 200 ms to pro-

cess a single frame (equivalent to 105 samples in 6 hrs)
which is good enough for offline data generation.

6 Conclusion

We have proposed and experimentally verified a
method to detect self intersecting hand poses created
by synthetic hand pose generators. To find intersec-
tion between hand parts we construct convex hulls for
all hand parts and calculate distance between the same
using GJK-EPA algorithm. Pairs of parts which have
negative distance are said to be intersecting. A pose

which has at least one pair of intersecting hand parts
is considered as self intersecting and is eliminated. We
have demonstrated experimentally that our method
works well in all intersection scenarios and is suitable
for offline data generation. We have analyzed failure
cases of existing methods and showed our method’s ac-
curacy in such cases. Our method is applicable to all
synthetic pose generation softwares using LBS and will
benefit researchers who design or use the same.

References

[1] G. v. d. Bergen. A fast and robust gjk implementation
for collision detection of convex objects. Journal of
graphics tools, vol.4, no.2, pp.7–25, 1999.

[2] S. Cobos et al. Efficient human hand kinematics for
manipulation tasks. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp.2246–
2251, 2008.

[3] E. Coumans et al. Bullet physics library. Open source:
bulletphysics. org, 15, 2013.

[4] E. G. Gilbert et al. A fast procedure for comput-
ing the distance between complex objects in three-
dimensional space. Robotics and Automation, IEEE
Journal of, vol.4, no.2, pp.193–203, 1988.

[5] P. Krejov et al. Combining discriminative and model
based approaches for hand pose estimation. In 11th
IEEE International Conference and Workshops onAu-
tomatic Face and Gesture Recognition, vol.1, pp.1–7,
2015.

[6] S. Melax et al. Dynamics based 3d skeletal hand track-
ing. In Proc. of Graphics Interface 2013, pp.63–70.
Canadian Information Processing Society, 2013.

[7] A. Memo et al. Exploiting silhouette descriptors and
synthetic data for hand gesture recognition. Citeseer
2015.

[8] C. Muratori. Implementing gjk, 2006.
[9] N. Neverova et al. Hand segmentation with structured

convolutional learning. In Asian Conference on Com-
puter Vision, pp.687–702. Springer, 2015.

[10] I. Oikonomidis et al. Efficient model-based 3d tracking
of hand articulations using kinect. In BMVC, vol.1,
no.2, pp.3, 2011.

[11] G. Rogez et al. 3d hand pose detection in egocentric
rgb-d images. In Computer Vision-ECCV 2014 Work-
shops, pp.356–371. Springer, 2014.

330

Hand Pose

Intersecting(Y/N) No No No Yes
Intersecting Pairs None None None (9,12)

Penetration
Depth(mm)

NA NA
-1.21(less than

threshold)
-8.04

Hand Pose

Intersecting(Y/N) Yes Yes Yes Yes
Intersecting Pairs (9,12),(10,12) (9,12),(9,13),(10,12),(10,13) (6,9),(7,10),(8,11) (6,17),(7,17),(8,17)

Penetration
Depth(mm)

-10.69, -8.59
-4.41, -9.32,
-5.73, -9.04

-11.62, -9.24,
-6.52

-16.55, -5.24,
-15.70

Table 3: Intersection detection and penetration depth computation for various hand configurations. The results
show that our method detects self intersections in all possible hand pose configurations.

Hand
Pose

Joint
Angle
Limits

Index finger
MCP: 90◦

Thumb
TMC(FE): 50◦
TMC(AA): 45◦

Middle Finger
MCP(FE): ±30◦

Index finger
MCP(FE):90◦

MCP(AA):±30◦

Middle finger
MCP: 90◦
DIP: 110◦
PIP: 90◦

Actual
Joint

Angles

Index finger
MCP: 60◦

Thumb
TMC(FE): 2.5◦
TMC(AA): 12◦

Middle Finger
MCP(FE): −15◦

Index finger
MCP(FE):8◦

MCP(AA):15◦

Middle finger
MCP: 79◦
DIP: 110◦
PIP: 85◦

JAM No Intersection No Intersection No Intersection
Ours Intersecting Intersecting Intersecting

Hand Parts

Table 4: Examples of poses where Joint angle constraints are satisfied but the poses are self intersecting. Here
Joint Angle Method clearly fails. Our method detects intersections correctly. AA: Abduction-Adduction, FE:
Flexion-Extension of joints, JAM: Joint Angle Method.

[12] H. Liang et al. Parsing the hand in depth images.
IEEE Transactions on Multimedia, vol.16, no.5, pp.1241–
1253, 2014.

[13] C. Choi et al. A collaborative filtering approach to
real-time hand pose estimation. In Proc. of the IEEE
International Conference on Computer Vision, pp.2336–
2344, 2015.

[14] C. Xu and L. Cheng. Efficient hand pose estimation
from a single depth image. In IEEE International
Conference on Computer Vision (ICCV), pp.3456–3462,
2013.

[15] M. Šaric. Libhand: A library for hand articulation.
Version 0.9, 2011, http://www.libhand.org/

[16] M. Schröder et al. Real-time hand tracking using
synergistic inverse kinematics. In IEEE International
Conference on Robotics and Automation, pp.5447–5454,
2014.

[17] S. Sridhar et al. Interactive markerless articulated
hand motion tracking using rgb and depth data. In
IEEE International Conference on Computer Vision
(ICCV) , pp.2456–2463, IEEE, 2013.

[18] J. S. Supancic III et al. Depth-based hand pose esti-
mation: methods, data, and challenges. arXiv preprint,
2015.

[19] E. Tan. Estimating human tactile resolution limits for
stimulator design. Master’s Report, Dept of EECS,
UC Berkeley, 1995.

[20] D. Tang et al. Real-time articulated hand pose esti-
mation using semi-supervised transductive regression
forests. In IEEE International Conference on Com-
puter Vision, pp.3224–3231, 2013.

[21] J. Taylor et al. User-specific hand modeling from
monocular depth sequences. In IEEE Conference on
Computer Vision and Pattern Recognition , pp.644–
651, 2014.

[22] J. Tompson et al. Real-time continuous pose recovery
of human hands using convolutional networks. ACM
Transactions on Graphics (TOG), vol.33, no.5,pp.169,
2014.

[23] G. Van Den Bergen. Proximity queries and penetra-
tion depth computation on 3d game objects. In Game
developers conference, vol.170, 2001.

[24] X. Zhou et al. Model-based deep hand pose estima-
tion, In arXiv preprint arXiv:1606.06854, 2016.

[25] A. Tagliasacchi et al. Robust articulated-icp for real-
time hand tracking. In Computer Graphics Forum,
vol.34, no.5, pp.101–114, Wiley Online Library, 2015.

331

