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Abstract 

Inspired by the human vision system and its capability 
to process in real-time, an efficient framework for 
low-level feature extraction on hexagonal pixel-based 
images is presented.  This is achieved by utilising the 
spiral architecture addressing scheme to simulate 
eye-tremor along with the convolution of non-overlapping 
gradient masks.  Using sparse spiral convolution and the 
development of cluster operators, we obtain a set of 
output image responses “a-trous” that is subsequently 
collated into a consolidated output response; it is also 
demonstrated that this framework can be extended to 
feature extraction at different scales. We show that the 
proposed framework is considerably faster than using 
conventional spiral convolution or the use of look-up 
tables for direct access to hexagonal pixel neighbourhood 
addresses. 

1. Introduction 

Inspired by the human vision system and its capability of 
real-time processing, the possibility of increasing efficiency 
when performing processing tasks such as feature extraction 
is considered by combining three characteristics of the hu-
man vision system. Firstly, we consider how the visual 
information is acquired: the fovea, a small region within the 
retina, which consists of a large number of photoreceptor 
cones, is accountable for the sharpness obtained during vi-
sion capture.  These photoreceptors are structured in a 
hexagonal arrangement [4, 5, 11, 14]. To mimic this char-
acteristic we represent images on a hexagonally structured 
grid using pixels that are hexagonal in shape. Secondly, 
ganglion cells do not completely overlap in the central fovea 
of the retinal photoreceptive fields [9].  Correspondingly, 
we develop a framework for feature extraction in which 
image processing operators are convolved with images in a 
non-overlapping way; this contrasts with conventional op-
erator-image convolution. Thirdly, three types of movement 
can be found with the human eye: drift, micro-saccades and 
tremor [12]. As a consequence of the latter, (i.e. eye tremor - 
an involuntary oscillation of the eye), the human vision 
system sparsely processes a series of slightly off-set images 
obtained from these rhythmic movements, rather than pro-
cessing single static images. Correspondingly we adapt this 
eye tremor approach to process images by using a set of 
similarly off-set images, each of which is partially processed 
by non-overlapping filters.  
  Recent research has highlighted the many advantages of 
hexagonal pixel-based images [2, 3, 6, 15, 16, 17]. Sheridan 
presented an alternative addressing system, known as the 
Spiral Architecture, that labels each hexagonal pixel with a 
single co-ordinate address. However, processing images 
indexed by the Spiral Architecture is not always trivial as the 
method of retrieving pixel neighbours within a 
one-dimensional spiral addressing scheme for processing 
tasks such as operator convolution requires computationally 
expensive radix-7 addition. We exploit the concept of eye 

tremor to circumvent this difficulty. Building on our work in 
[3], we show how using the Spiral Architecture structure, we 
can develop scalable cluster operators that can be applied 
efficiently to a spirally addressed image. Using the eye 
tremor concept [11], for each static image, six additional 
images are generated but with the spiral centre spatially 
off-set by one pixel. This presents the opportunity to 
convolve gradient operators efficiently in a non-overlapping 
fashion with each of the off-set images. For any operator 
size, we can thus obtain resultant feature maps “a-trous” for 
each off-set image that can be consolidated to form a single 
complete feature map.  

2. Spiral Architecture 

We use the spiral addressing scheme in [13] that originates at 
the centre pixel of the hexagonally structured image (pixel 
index 0) and progresses outward in a spiral manner using a 
one-dimensional index. This addressing scheme makes it 
possible to index each pixel within a hexagonal image using 
a single co-ordinate value, permitting the efficient storage of 
the image within a one dimensional vector [10]. Pixels that 
are neighbours within a 7-pixel layer-1 super-tile within a 
hexagonal image will form a contiguous set within the one 
dimensional vector. This is key to achieving fast and efficient 
processing when applying image processing operators di-
rectly to the stored image vector. See [13] for further details. 

 
2.1. Spiral Neighbourhoods 

Our approach is based on a specially defined convolution of 
neighbourhood operators with a set of spatially off-set images. 
We may define these operators over a range of scales, and we 
refer to the neighbourhoods over which they are convolved as 
cluster neighbourhoods, as the neighbourhoods may be de-
fined recursively using clusters of neighbourhoods at a smaller 
scale. Within an overall hexagonal lattice structure we may 
consider hierarchically ordered clusters with six-fold rota-
tional symmetry. Each lowest order (layer-0) cluster consists 
of a single pixel. Each pixel has six immediate neighbours: a 
pixel and its immediate neighbours form a layer-1 cluster 
(containing seven pixels). Similarly we may generate layer-2 
clusters (of 49 pixels) where each layer-2 cluster comprises a 
layer-1 cluster and its six immediately neighbouring layer-1 
clusters. We may generate higher order clusters in a recursive 
fashion, in which a layer-n cluster is generated by combining a 
layer-(n-1) cluster with its 6 neighbouring layer(n-1) clusters. 
For example, a single layer-2 cluster, comprising seven layer-1 
clusters (each centred at a pixel labelled 0) is presented in 
Figure 2. 

3. Cluster Operators 

We use the term cluster operators for operators that are ap-
plied to cluster neighbourhoods in the spiral architecture. In 
recent work by Coleman et al., [3, 7, 8] it has been shown how 
adaptive hexagonal operators can be created using a finite 
element framework constructed of either derivative operators 
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aligned orthogonally (ie, aligned along the x- and y- axis), or 
tri-directional operators, each separated by 60o, aligned along 
the x-, y- and z- hexagonal axes. In this paper, our operators are 
aligned along the x- and y- Cartesian axes and are constructed 
by placing a node at the centre of each pixel centre and con-
necting these using a virtual lattice of equilateral triangles. We 
associate a piecewise linear basis function 𝜙" with each node 
t, where 𝜙# = 1  at node w=t and 𝜙# = 0 at all other nodes  
𝑤 ≠ 𝑡. Therefore each 𝜙#  is a "tent-shaped" function with 
support constrained to a small neighbourhood of six triangular 
elements centred on node w.     A hexagonal image is rep-
resented by a function å

Î

=
Aq

qqII f)( , where A denotes the 

set of all nodal addresses and the image intensity value of the 
each pixel centred at node q is denoted by { })(qI . 

    Operators for feature detection, more specifically edge 
detection, are often derived using first derivative approxima-
tions. Similarly, over cluster neighbourhoods we present a 
weak form of the first directional derivative I Iu b b u[ á́ . 
By considering cluster neighbourhoods of increasing size 
(corresponding to layer- l , L,...,1=l ) we may generate 
operators at increasing scale. Applied to a pixel location with 
index w, the derivative is approximated over a 
λ-neighbourhood )(wNl  by multiplying a test function v Ha 1 
with the derivative term; the result is then integrated over 

)(wNl . The neighbourhood size refers to the corresponding 
layer- l  cluster, e.g. seven hexagonal pixels are included in a 

)(1 wN neighbourhood cluster, and 49 hexagonal pixels in a 

)(2 wN neighbourhood cluster. Hence, we can obtain a layer-λ 
directional first derivative ( )wDl  at each node w as  

( ) ò WÑ×=
)(wN

wdIdwD
l

l
l y  

where b 8 (cos ,sin )⁄ ⁄  represents the unit direction vector. 
Thus we can say that for any choice of layer ,...3,2,1=l etc., 
each test function v Ha 1  has its support constrained over the 
neighbourhood )(wNl , and 
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where lH is a hexagonally structured operator equivalent in 
size to the hexagonal λ-neighbourhood. In this instance, a 
Gaussian function was selected for the layer- l  neighbour-
hood test function v Ha 1, implemented so that at least 95% of the 
function’s cross section covers )(wNl . For implementation 
purposes, as shown in Figure 1, a layer-2 operator can be 
stored as a sequence of 7-point layer-1 operators in rows of a 
two-dimensional array indexed by the layer-1 cluster neigh-
bourhoods that comprise the corresponding layer-2 
neighbourhood cluster. Efficient implementation using such a 
storage structure for layer l cluster operators in general is 
discussed in Section 4. 
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4. Bio-inspired framework for Fast Processing 

Adapting the characteristics of the human vision system dis-
cussed in Section 1, a bio-inspired framework for fast 
processing has been developed that has a number of elements: 
firstly, the concept of eye tremor is simulated by marginally 
off-setting images taken from a selected scene; secondly the 
paradigm of sparse processing of a scene is implemented using 
a sparse spiral convolution that enables interaction of a l
-neighbourhood cluster operator to be limited to an easily 
defined subset of l -neighbourhood clusters; thirdly, an effi-
cient approach for acquiring the addresses of neighbouring 
hexagonal pixels within the spiral architecture for l
-neighbourhood clusters is developed for convolution of 
cluster derivative operators. 

4.1. Eye Tremor Simulation 

Consider a particular scene represented by a hexagonal 
pixel-based image .0I Six additional images, 

6,...,1, =jI j ,  are also generated for that scene, with 
each image jI  off-set by one pixel in the direction of one 
of the hexagonal axes. The result is six images spatially 
off-set by one pixel from the origin of the “base” image 
0I , producing the “eye tremor” processing framework. 

The spiral address 0 in each image 6,...,1, =jI j  corre-
sponds to the original hexagonal pixel with address j in 
0I . 

 
4.2. Non-overlapping Spiral Convolution 

To convolve a hexagonally structured derivative operator
lH of “size” λ with a given image 0I , lH is sparsely 

applied to each image 6,...,0, =jI j , and the resultant 
vectors combined to achieve the consolidated output. 
  The operator lH  is applied only to pixel locations with 
a spiral address 0 (mod 7), i.e. sparse convolution. This is 
illustrated in Figure 2, where pixel positions are labelled 

 
Fig. 1.  Storage structure for a larger scale convolution operator 
(x-derivative in this example)  

Cluster Index 

C
lu
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er

 

 0 1 2 3 4 5 6 

C0 0 -0.011 -0.005 0.005 0.011 0.005 -0.005 
C1 -0.008 -0.001 -0.004 -0.003 -0.007 -0.012 -0.020 
C2 0.002 -0.007 -0.004 0.004 0.012 0.007 0 
C3 0.011 0.012 0.013 0.005 0.009 0.016 0.014 
C4 0.008 0.007 0.012 0.020 0.010 0.004 0.003 
C5 -0.002 -0.012 -0.007 0 0.007 0.004 -0.004 
C6 -0.011 -0.009 -0.016 -0.014 -0.012 -0.013 -0.005 
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indicating, for each image 6,...,0, =jI j , which pixel 
location equates to 0(mod 7). This labelling of each pixel 
in image 0I  can then be used to define “base-7-zero” 
convolution IHS

07
Ä= ll

 of the operator lH with im-

age I  by: 

å
Î

´=
)(

0
0

)()()(
wNw

wIwHwS
l

ll        

{ })7(mod00 =Î" www  
and )(wNl denotes the neighbourhood cluster (layer-λ) 
placed at the pixel with address w.  Therefore, the simu-
lation of eye tremor in relation to a particular scene 
represented by a base image 0I , can be implemented by 
applying “base-7-zero” convolution (

07
Ä ) of the deriva-

tive operator lH to each image 6,...,0, =jI j , resulting in 
seven output responses: 

6,...,0,
07

=Ä= jIHS j
j

ll  
which when consolidated provide the overall output 

0IHE Ä= ll . 

4.3. Address Identification of Cluster Neighbourhood 

For any layer- l cluster operator, when implementing 
“base-7-zero” convolution as defined in Section 4.2 it is 
required to identify the spiral addresses of the pixels in 
each of the layer- l cluster neighbourhoods that are cen-
tred at pixels with spiral address 0 (mod 7). In the case of 

1=l , i.e., a simple 7-point hexagonal operator, this task is 
particularly straightforward: if the centre pixel of the 
cluster neighbourhood has spiral architecture address 0w     
( 7mod,00 =w ), then the 6 adjacent neighbours are ad-
dressed in a clockwise direction, giving an ordered set of 
addresses as { }6 00 =+ jjw . 

These addresses are contiguous in the vector used to 
store the image data. Hence, when 1=l ,  “base-7-zero” 
convolution may be implemented efficiently in the spiral 
architecture by simply identifying segments of length 7 of 
the one-dimensional image storage vector and using 
point-by-point multiplication with the 7 values of the 
cluster operator stored in a vector in the same clockwise 
order (i.e., in the order corresponding to the addresses  

{ }6 0=jj ). 
For larger operators, when 1>l , in order to obtain a 

set of spiral architecture addresses to define the layer- l
cluster neighbourhood )( 0wNl , we follow a recursive 
process based on the cluster neighbourhood hierarchy. 
This process identifies an ordered set containing the spiral 
architecture addresses of the centres of the layer-1 cluster 
neighbourhoods that comprise )( 0wNl . As the address 
of each such centre contains the value 0 mod 7, the layer-
l operator may be applied efficiently as a set of layer-1 
operators to the corresponding set of layer-1 cluster 
neighbourhoods, in each case using the simple procedure 
described above for the case 1=l . For example, as il-
lustrated in Figure 1, a layer-2 cluster operator may be 
implemented efficiently as an ordered set of layer-1 op-
erators, each of which comprises 7 values that are 
convolved with 7 contiguous image values in the 
one-dimensional storage vector. 
Application of a layer- l operator requires identification 
of an ordered set of addresses of the centres of the layer-1 
cluster neighbourhoods contained in )( 0wNl : there are 

1-l recursive steps to be carried out,  with a7 centres 
of layer-( al - ) cluster neighbourhoods identified at step 
𝛼 = 1,… , 𝜆 − 1. Starting with 𝑐0 = 𝑤0, for each of the 

17 -a  layer-( 1--al ) centres, 1-ac , identified at step 
1-a , 7 layer-( al - ) centres are identified at step a as: 

a
al

aa icc -
- += )10(1

, 6,...,0=ai  

Thus, after 1-l  recursive steps, we generate 17 -l lay-
er-1 centres that are indexed as 

( ) å
-

=

--
- =

1

1

1
1 )10(

l

a
a

al
l icindex  

Considering the centre of each layer-1 cluster neigh-
bourhood, 1-lc , the addresses for the pixels in that 
cluster neighbourhood are represented by  

{ }6 01 =- + jjcl  
In Figure 3, we show pseudo-code for the implementation 
of the cluster neighbourhood address identification as 
described above, i.e., the code generates an ordered set, 
{ }][ jc , of the spiral architecture addresses that comprise 

)( 0wNl .  Based on this approach, in the number of 
spiral additions required to obtain a set of spiral addresses 
in a layer- l  cluster neighbourhood )( 0wNl  is signif-
icantly reduced compared with the number of spiral 
additions needed to obtain a set of spiral addresses for a 
l -cluster neighbourhood )(wNl  with  7mod,0¹w .  

(For  7mod,0¹w ,  a  complete  set  of  l7  spiral 
additions is necessary). 
  Thus, as demonstrated by the run-times presented in 
Table 1, our proposed methodology of using sparse 
“base-7-zero” for operator convolution is considerably 
more efficient than the standard spiral convolution ap-
proach. An alternative approach would be to pre-compute 
and store all of the cluster neighbourhood addresses in a 
look-up table (LUT). However, due to the computational 
burden associated with extensive recall of LUT values, 
even this approach is less computationally efficient than 
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Fig. 2.  Position of pixels in the “base” image 0I with equivalent 

value 0 (mod 7) addresses for images 6,...,0, =jI j . 
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our proposed algorithm.  
 

int c[0] = 0w ; //centre 
int m=0; 
for (a =1; 1-£ la ; a ++) 
  { 
   neighbour(c[0], a ); 
  } 
 
neighbour(int c, int a) 
  { 
  for (i=1, i<=6, i++) 
    { 
    m=m++; 

    c[m] = c + ia10  
    a= a-1; 
    if (a>0) 
        { 
     neighbour(c[m],a); 
    } 
    a= a+1; 
    } 
  } 

Fig. 3.  Algorithm for address identification 

5. Performance Evaluation 

To determine the efficiency of the proposed eye tremor 
approach, performance evaluation was completed with 
run-times measured for convolving an operator using the 
eye-tremor approach, and these then compared with 
run-times measured for convolving an operator with a 
spirally addressed image using a standard approach where 
the neighbouring addresses for each pixel are obtained 
using two different methods: (i) where pixel 
neighbourhoods are found using time consuming 
hexagonal arithmetic; and (ii) a LUT is generated that 
stores the neighbourhood addresses prior to operator 
convolution. (The time taken to generate the LUT is 
0.4017s in the case of 1=l and 4.2172s in the case of 
λ=2 ). Evaluation consisted of applying both the λ=1 and 
λ=2 cluster operators to the Lena image of size 400x400 
which has been converted from square to hexagonal pix-
els using the method in [13].   

Table 1. Performance of convolving 7-point operator 

Convolution Ap-

proach 

Run-time
)1( =l  

Run-time 
)2( =l  

Proposed “eye tremor”  0.0079s 0.1399s 

Standard  3.7621s 24.5104s 

Standard using LUT 0.0711s 0.2191s 

The results in Table 1 (averaged over 100 runs using a 
workstation with a 2.99Ghz Pentium D processor and 
3.50Gb of RAM) demonstrate that the implementation 
speed using standard spiral convolution can be enhanced 
by using a LUT; but more importantly the results show 
that our proposed eye-tremor approach is orders of mag-
nitude faster than standard spiral convolution, and 
significantly faster even than use of a LUT: nine times 
faster for  a  λ=1  cluster operator, and twice as fast for 
a λ=2 cluster operator. The overhead of storing the LUT 
should also be considered, which increases substantially 

for larger λ values. The run-times in Table 1 should be 
considered as relative, as no attempt has been made to 
optimise implementation. 

6. Conclusion 

Motivated by the human vision system, a biologically 
inspired approach to efficient feature extraction has been 
presented, which consists of a hexagonal pixel-based 
framework that permits the implementation of eye tremor 
and non-overlap of operator convolution.  We have 
shown that by producing feature maps “a-trous” (at 
various scales), and storing these in one-dimensional 
vectors, a single complete feature map can be generated 
significantly faster than producing the equivalent feature 
map via standard convolution or with the aid of a 
pre-stored neighbourhood LUT. 

As a focus for future work, the proposed eye tremor 
approach will be investigated for fast video processing. 
Each frame in a sequence can be slightly off-set from the 
previous frame in a cyclic pattern. Hence (possibly 
overlapping) sub-sequences of seven frames may be 
processed at high speed to generate a “continuous” 
time-variant feature map.            
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