
Multi-resolution ICP for the Efficient Registration of Point
Clouds based on Octrees

Michiel Vlaminck, Hiep Luong, Wilfried Philips
Image Processing and Interpretation (IPI), Ghent University, imec, Belgium

michiel.vlaminck@ugent.be

Abstract

In this paper we propose a multiresolution scheme
based on hierarchical octrees for the registration of
point clouds acquired by lidar scanners. The point
density of these point clouds is generally sparse and
inhomogeneous, a property that can yield a risk for
correct alignment. Experiments demonstrate that our
multiresolution technique is a lot faster than the tradi-
tional iterative closest point (ICP) algorithm while it
is more robust, e.g. in case of abrupt movements of
the sensor. We can report a speed-up factor of more
than 30, without jeopardizing the level of accuracy. In
scenarios for which the level of detail is less critical,
e.g. in case of navigation for autonomous robots, we
can even achieve a larger speed-up by trading speed for
quality.

1 Introduction

Nowadays, the alignment or registration of point
clouds, also referred to as scan matching, plays a cru-
cial role in many localization and mapping solutions,
often denoted as SLAM. On its turn, SLAM is a crit-
ical part for applications on autonomous vehicles or
applications on critical infrastructure or disaster man-
agement. In this paper we focus on the 3D mapping of
indoor ‘man-made’ environments. Our proposed tech-
nique can be used for both online, e.g. autonomous
robots, and offline applications, e.g. mobile mapping.
The main issue with a lot of existing systems is that
they are still computation intensive. Many solutions
have therefore been presented in literature that try to
improve the speed of the iterative closest point (ICP)
algorithm, the most popular scan matching technique.
This algorithm iteratively tries to find closest point
pairs that are then used to compute the transformation
by minimizing the total distance between them. The
most time intensive part of this algorithm is the closest
point computation. Most speed-up improvements are
thus based on one of the following ideas: 1) reduce the
number of points, 2) reduce the number of iterations
or 3) speeding up the corresponding point computa-
tion. In this work, we will tackle them all at once by
incorporating a hierarchical data structure, i.e. an oc-
tree, to perform multi-resolution spatial partitioning.
In each next iteration, we consider a higher resolution
and based on that, we use a specific subset of points
that we use to compute the transformation, denoted as
control points. Using this technique we can not only
reduce the number of iterations, we are also able to
speed up the closest point computation since nearest
neighbor searches can be easily found using the octree.
Moreover, we show how approximate nearest neighbors
can be sufficient to lead to an accurate alignment. We
apply our technique to reconstruct man-made indoor

environments, typically consisting of large planar sur-
faces. Examples are conference rooms or university
campuses.

2 Related work

Regarding the speed-up of correspondence estima-
tion, some studies rely on the fact that point clouds are
often derived from range images which have an orga-
nized structure, i.e. a fixed width and height. In case
we are interested in the transformation between two
consecutive scans of the same sensor we can exploit this
structure to quickly find neighbouring points. In [6],
Newcombe et al. used this idea to perform projective
data association (PDA), a technique that projects the
points of one scan to the camera view of the previous
scan. In addition, the authors focused on a hardware-
oriented speed-up, exploiting the parallel nature of the
PDA process by offloading it to the GPU. However, in
case we have to cope with data from different modal-
ities, this exploitation is not longer applicable. Also,
in case of incremental alignment of successive scans,
we often want to keep track of a global 3D map which
does not have the initial structure anymore, because we
want to filter redundant points to keep the size of the
map tractable. Therefore, other 3D partitioning data
structures are more appropriate, such as hierarchical
bounding volumes or trees. Using these hierarchies, it
is possible to reduce the processing time for the closest
point computation. For example, using a k-d tree, the
time complexity of the process can be decreased from
O(NsNt) to O(Ns logNt) in which Ns and Nt are the
number of points of respectively the source and target
point cloud. The problem with k-d trees however is
that it is often complicated to update them as it is very
likely that the tree has to be rebuild when you insert
new points to the scene. For this reason we adopt the
octree data structure in this work. In [2], Hornung et
al. presented OctoMap, an open source framework for
3D mapping using octrees. This framework was used
by Beno et al. [5] to map the environment and subse-
quently help in navigating autonomous robots. How-
ever, they do not use the octree representation to help
in performing the actual scan matching. Therefore,
the authors of [1] proposed to combine a hierarchical
searching scheme, similar to the one presented by Jost
et al. [3], with an octree-based ICP algorithm.

3 Approach

In this work we adopt a similar approach as in [5] by
changing the standard single resolution ICP to act as a
multiresolution registration algorithm. To this end we
use an octree to serve as a hierarchical data structure
and to filter the data up to the desired resolution. In

15th IAPR International Conference on Machine Vision Applications (MVA)
Nagoya University, Nagoya, Japan, May 8-12, 2017.

© 2017 MVA Organization

09-26

308

Figure 1. Picture of the multiresolution scheme. From left to right, the voxel size is respectively 0.64, 0.32,
0.16, 0.08 and 0.04 meter corresponding with resolution level 10 to 14.

the following we will briefly discuss the ICP algorithm
and subsequently explain how we extended it using our
octree-based multi-resolution scheme.

3.1 Iterative closest point (ICP)

In a nutshell, the ICP algorithm iteratively tries to
find closest point pairs in two point clouds and subse-
quently computes the transformation that minimizes a
distance metric and that yields the perfect alignment of
both point clouds. Several metrics have been proposed
in literature including the point-to-point and point-to-
plane distance. We will use the latter one as it has been
proven that it is more robust and leads to faster con-
vergence. The point-to-plane distance metric is given
by the following equation:

E(Ps,Pt; T) =

N∑
i=1

wi((Tpi
s − p

c(i)
t) · nc(i)

t)2. (1)

In this equation, Ps and Pt are respectively the
source and target point cloud that we want to align,
pi
s is the source point corresponding with the target

point p
c(i)
t with surface normal n

c(i)
t . The vector c

contains the indices of the N corresponding points and
wi is the weight corresponding to the i-th correspond-
ing pair. In order to solve this optimization problem,
we adopt the method proposed by Low et al. in [4].
Regarding the estimation of the surface normals in the
point cloud we adopt the same strategy as was pre-
sented in [7]. More specifically, we build a topological
space of the point cloud yielding for every point its op-
timal neighbourhood. Using this neighbourhood, we
compute for every point the eigenvectors and eigenval-
ues of its neighbouring points. The surface normal is
then approximated by the eigenvector corresponding
to the smallest eigenvalue.

3.2 Octree-based multiresolution ICP

Most of the computation time for the ICP algorithm
is spent to the corresponding pair computation. The
largest speed-up can hence be obtained by lowering the
number of points used to estimate the transformation
or by speeding up the nearest neighbour search. Moti-
vated by this idea, we convert both the source and the
target point cloud (also denoted as model point cloud)
to an octree data structure. As can be seen in Fig-
ure 2, an octree is a hierarchical data structure that
represents the environment as a cube which is itera-
tively subdivided by 8 smaller sub-cubes. The cuboid

Figure 2. The octree data structure (b) and its
representation in 3D (a). This hierarchical space
partitioning is the core of our registration ap-
proach.

at the root level serves as a bounding box of the envi-
ronment. The main idea is now to perform registration
using different resolutions, going from the lower to the
higher resolution, hence adopting a coarse-to-fine reg-
istration or alignment. For every iteration, the result
of the previous one serves as an initial guess and doing
so we iteratively refine the transformation estimation.
In every iteration we conduct the main steps of the
traditional ICP algorithm, but in contrast to existing
solutions, we change the resolution every time. This
hierarchical octree-based ICP algorithm has many ad-
vantages. First, it helps finding nearest neighbours in a
quick way. Second, since the transformation estimated
at a low resolution can serve as an initial guess for the
transformation estimation at higher resolutions, it is
not needed to perform multiple iterations at the same
resolution level. This way we can lower the total num-
ber of iterations. Third, the displacement between two
point clouds can be larger, hence leading to a higher
robustness of the system. Figure 1 illustrates how the
several resolution levels look like.

3.2.1 Building the tree

As mentioned in the introduction, the main envi-
ronments we have in mind are indoor scenes with large
planar surfaces such as conference rooms or university
campuses. For these environments, the octree cells at
some point in the hierarchy will contain only points
that are lying on a planar surface and can hence be eas-
ily summarized by one surface feature, cfr. [7]. Among
other things, it incorporates the centroid of the cell and
the average normal vector and it will be updated ev-
ery time a new point is added to a certain cell. We
refer the reader to [7] for an entire description of this

309

Algorithm 1 Alignment of two point clouds

1: function align(Ps, Pt, R, t)
2: create octrees Ts and Tt for Ps en Pt

3: for each resolution ri in {rmin, . . . , rmax} do
4: Ps,i ← Ts(ri)
5: Pt,i ← Tt(ri)
6: c← approxClosestPoints(Ps,iPt,i)
7: c← reject(c)
8: w← weight(c)
9: (Ri, ti) = argmin

Ri−1,ti−1

E(Ps,i,Pt,i;Ti−1)

10: end for
11: end function

feature. When we want to align two consecutive scans,
both the source octree Ts and the model octree Tt must
be built from scratch. However, in the case we want to
perform incremental registration for use in 3D recon-
struction or SLAM applications, the model point cloud
can be updated every time a new point cloud is added
to the map.

3.2.2 Finding approximate closest points

In order to determine corresponding pairs, we adopt
the principle of approximate closest points. Moreover,
we use mutual closest point pairs, i.e. we consider
two points matching as both the source point is the
closest point to the target point and vice versa. To
find the approximate closest point correspondences at
resolution level ri, we adopt the following procedure:

1. Extract the point clouds Ps,i and Pt,i by selecting
for each cell at resolution ri the centroid and the
average normal vector of the cell.

2. For every point in Ps,i and Pt,i, traverse the octree
Ts or Tt corresponding to respectively the source
and target point cloud until cell Ci at resolution
ri has been reached. This operation takes O(1)
processing time.

The total time complexity to find corresponding
points at resolution ri is therefore given by O(logNs,i).
Hence, the computation time is only dependent on the
resolution level and the size of the bounding box and
not on the actual number of points of the model point
cloud.

3.2.3 Octree-based registration algorithm

The idea of the algorithm is to minimize the number
of points we consider to guide the minimization pro-
cess. To this end, we use the octree representation of
the point cloud to filter it spatially and to keep a sum-
marized version. Each octree cell at all levels contains
the centroid point of all points that fall within this cell
as well as the average surface normal. When we want
to align two point clouds, we start with processing a
low resolution representation of the point cloud, ob-
tained by considering all nodes up to the level with
a certain voxel size. Thus, we can start with a voxel
size of 64 centimeter and end up with a voxel size of
1 centimeter. Algorithm 1 summarizes this idea. Note
again that in case of incremental registration, it is not

needed to rebuild the octree for the target point cloud
every time (line 2). Instead, the octree can be updated
every time new points are discovered. On line 4 and
5, Ts(ri) and Tt(ri) are representing the functions that
extract the centroid point cloud using resolution level
ri. Next, using these two new point clouds, the closest
point pairs are determined as explained in the previ-
ous section. However, it can still happen that some of
these closest points are bad corresponding pairs and
are hence acting as outliers. Therefore, the reject
function will check if the surface normal is sufficiently
close, i.e. if the angle between the two vectors is small.
Based on the feature representations (including the
normal vectors), a weight is assigned for each corre-
sponding pair based on the distance in feature space.
Finally, the error metric presented in 1 is minimized
using these weights.

Using this multi-resolution technique, it is (no
longer) needed that for each resolution the iterations
should continue until convergence. In fact, only one it-
eration seems to be sufficient for the intermediate res-
olutions. Only at the lowest resolution the iterations
can continue until convergence, but even there we see
that often times, only one iteration is needed.

4 Experimental results

We conducted some experiments using data that was
captured at a campus of Ghent University. The data
was acquired using a Velodyne HDL-32e lidar scanner
that was put horizontally. The goal was to perform
sequential registration of consecutive point clouds and
hence to obtain large-scale 3D reconstructions of in-
door environments. In total 14 sequences were evalu-
ated, all of them containing 30 seconds to 3 minutes
of lidar data. Table 1 gives an overview of the results
of our octree-based multiresolution alignment process.
These results summarize the processing times as well
as the residuals of the different resolution levels. The
term residual denotes the final cost of the ICP proce-
dure after convergence, i.e. the Euclidean distance of
all corresponding point pairs. All of the experiments
were conducted on a laptop computer with an Intel
Core i7-4712HQ, 2.30Ghz CPU inside and 16GB RAM.
The experiments were conducted using OpenMP using
the 4 cores of the CPU at the same time for the cor-
respondence estimation step. As can be seen, the pro-
cess converges quite quickly to the optimal residual.
In other words, between the iterations at resolution
level 12 and 13, the total gain is less than one mil-
limeter. Thus, for some applications, e.g. local map
building for autonomous vehicles, the level of accuracy
achieved at resolution level 13 is sufficient and can be
achieved in ±31 ms. Even if we pursue the best pos-
sible accuracy we can state that our multi-resolution
is beneficial in terms of processing speed. After res-
olution 16, corresponding to a leaf size of 1 cm, we
could not get any better residual. This is logical as the
Velodyne lidar data itself has an accuracy of ±2 cm,
independently of errors made in the pose estimation
process. Still we can report that on the local level,
i.e. without taking into account the error propaga-
tion in case of subsequent point cloud registration, we
achieve sub-centimeter accuracy. More precisely, the
average distance of corresponding pairs in consecutive
point clouds approximates 0.27. This can be denoted

310

Figure 4. Examples of a 3D reconstruction. The
blue color means that the points are located at
a lower height, whereas the orange color means
that the points are located at a greater height.

Table 1. Results of the octree-based alignment
process. In this table, the term residual denotes
the final cost of the ICP procedure after conver-
gence, i.e. the Euclidean distance of all corre-
sponding point pairs. The time t denotes the
time that is needed to compute the transforma-
tion using the respective resolution.

level residual (cm) t(ms)
initial 3.1907

11 0.6309 5
12 0.3027 11
13 0.2799 16
14 0.2725 32
15 0.2719 51
16 0.2716 77

total 0.2716 192
non-MR 0.2730 7212

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 11 12 13 14 15 16
 0

 10

 20

 30

 40

 50

 60

 70

 80

R
es

id
ua

l [
cm

]

T
im

e
[m

s]

Resolution level

Residual
Time

Figure 3. Residual and processing time for each
resolution level.

as very accurate. Moreover, this entire process takes
only 192ms whereas our non multi-resolution technique
takes slightly more than 7 seconds, hence leading to a
speed-up factor of 37. Figure 4 finally shows an ex-
ample of a 3D reconstruction result we obtained using
this approach on data that was recorded in an audito-
rium of Ghent University. Visually, we can not see any
discrepancies in the 3D reconstruction as the walls are

straight and no ghost objects can be noticed.

5 Conclusion

In this paper a new algorithm was presented for the
registration of point clouds acquired by lidar scanners.
The solution adopts a coarse-to-fine approach by us-
ing an octree-based ICP algorithm. Our solution is
not only faster than traditional approaches, it is also
more robust against abrupt movements of the sensor.
Experiments demonstrate that we achieve a speed-up
factor of more then 30 while the quality remains equal.
We can state that we can achieve a sub-centimeter ac-
curacy on the local level.

Acknowledgement

This research is part of the ARIA project, an ICON
project co-funded by imec, digital research institute
founded by the Flemish Government.

References

[1] Jianda Han, Peng Yin, Yuqing He, and Feng Gu. En-
hanced icp for the registration of large-scale 3d en-
vironment models: An experimental study. Sensors,
16(2):228, 2016.

[2] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill
Stachniss, and Wolfram Burgard. OctoMap: An ef-
ficient probabilistic 3D mapping framework based on
octrees. Autonomous Robots, 2013.

[3] Timothée Jost and Heinz Hügli. A multi-resolution ICP
with heuristic closest point search for fast and robust
3d registration of range images. In 4th International
Conference on 3D Digital Imaging and Modeling (3DIM
2003), 6-10 October 2003, Banff, Canada, pages 427–
433, 2003.

[4] Kok-Lim Low. Linear least-squares optimization for
point-to plane icp surface registration. Technical re-
port, Chapel Hill, University of North Carolina, 2004.

[5] Beno P., Pavelka V., Duchon F., and Dekan M.i. Using
octree maps and rgbd cameras to perform mapping and
a* navigation. In International Conference on Intelli-
gent Networking and Collaborative Systems (INCoS).
IEEE, Sep 2016.

[6] Otmar Hilliges David Molyneaux David Kim Andrew J.
Davison Pushmeet Kohli Jamie Shotton Steve Hodges
Andrew Fitzgibbon Richard A. Newcombe, Shahram Izadi.
Kinectfusion: Real-time dense surface mapping and track-
ing. In IEEE ISMAR. IEEE, October 2011.

[7] Michiel Vlaminck, Hiep Luong, Werner Goeman, and
Wilfried Philips. 3d scene reconstruction using omnidi-
rectional vision and lidar: A hybrid approach. Sensors,
16(11):1923, 2016.

[8] Jinkun Wang and Brendan Englot. Fast, accurate gaus-
sian process occupancy maps via test-data octrees and
nested bayesian fusion. In 2016 IEEE International
Conference on Robotics and Automation, ICRA 2016,
Stockholm, Sweden, May 16-21, 2016, pages 1003–1010,
2016.

[9] T. Whelan, M. Kaess, M.F. Fallon, H. Johannsson, J.J.
Leonard, and J. McDonald. Kintinuous: Spatially ex-
tended kinectfusion. In RSS Workshop on RGB-D: Ad-
vanced Reasoning with Depth Cameras, Sydney, Aus-
tralia, Jul 2012.

311

