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Abstract

We present a new calibration method for 3d mea-
surement systems consisting of two co-planar aligned
line scan cameras. As appliance we use a calibration
target whose geometric 2d and 3d parameters are only
approximately known. As our input data we take from
that target a sufficient number of single captured im-
age lines in different geometric positions. Then we cal-
culate 2d points within the joint viewing plane of the
cameras both by triangulation of corresponding image
points and by intersection with the lines on the tar-
get surface. The distances between the triangulation
points and the related intersection points are minimized
by linearizing and least squares adjustment. In the re-
sult we obtain all relevant parameters of the inner and
outer orientation as well as the 2d and 3d geometry pa-
rameters of the calibration target with high accuracy.

1 Introduction

Optical methods in industrial applications are quite
often based on line scan cameras. Obvious benefits
compared to matrix cameras are continuous process-
ing, short integration times, high resolution and high
reliability. This is true for both 2d and 3d applica-
tions. But while 2d applications are very common, 3d
applications are rare. One reason is that most 3d ap-
plications need a very precise geometric calibration. In
general, this is sophisticated for line scan systems.

While for matrix cameras there are a lot of well
known calibration approaches [8] and even public im-
plementations (for example OpenCV, MATLAB [1])
the calibration of line scan cameras is still problem-
atic. The few known approaches either provide only
a low accuracy or need high technical equipment such
as costly produced and measured calibration targets
or special movement devices. For example, in [3] ap-
proaches using linear movement are described. How-
ever, each divergence from the linearity may lead to an
inaccuracy of the calibration. And for some applica-
tions the use of an appropriate linear unit is generally
impossible. Other approaches like described in [7, 6]
disclaim the movement at all. But they presume a
well known calibration target with high precision both
in 2d and in 3d. We can archieve the required preci-
sion only by measuring the target by a second system
which is calibrated at least with the same accuracy.
And normally, this is costly and one need considerable
experience to avoid measuring faults.

The aim of the calibration method which we present
in this paper is to disclaim both a known movement
and a precisely measured target. This may be an im-
portant contribution to make 3d line-scan approaches
(for example [2, 4, 5]) more applicable in machine vi-
sion.

2 Presumptions

2.1 Calibration Target

The design of our calibration target is based on the
approach given in [6]. They describe an algorithm to
calculate 3d points by intersection between straight
lines of a pattern and the viewing plane of a line-scan
camera. As suggested in this approach we build for
experimental evaluations a target with four planes in
two different heights with three coded line markers on
each plane. The line markers are printed with a laser
standard printer on white paper and laminated on the
planes by hand. Figure 1 shows our calibration target,
which is quite similar to [6] but not symmetric.

Figure 1. Calibration target

Of course, the geometric design of the target can
be changed. Width, spacing and alignment of straight
lines can be optimized for the system that we want to
calibrate. The only presumption concerning the target
is that we rely on an unambiguous mapping from 1d
points on single captured image lines to 3d intersection
points on the target surface. To avoid measuring the
2d and 3d geometry parameters of our self made target
by a second system, we use only approximations. Thus,
at the beginning of calibration process the accuracy of
the 3d mapping is not very important.

2.2 System Setup and Target Views

In contrast to [6], our calibration approach works
only on stereo systems with co-planar aligned cameras.
The alignment should to be good but need not to be
perfect. Additionally, the cameras have to be triggered
so that both cameras of the stereo system capture their
lines at the same time. There are no other presump-
tions for the system setup because we do not assume
any defined, e.g. linear, movement.
As input data for our calibration we take a suf-

ficient number of independent single captured image
lines from the calibration target in different positions.
We call it target views. Of course, the more calibration
parameters we try to calculate the more target views
we have to capture. But due to the independency each
target view has its own outer orientation. Thus, we get
a lot of additional parameters. The resulting relations
are very complex and we need a systematic strategy,
for our calibration algorithm to converge. Our sugges-
tion for that strategy is drafted in figure 2.
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Figure 2. Different target views

We put the target in three different heights and in
each height we shift the target to the left and to the
right (2.a). Then we tilt the target around the y-axis
(2.b) and around the x-axis (2.c) in two directions re-
spectively. Thus, we get a lot of different positions
which we double by turning the target for 180 degree
around the z-axes (2.d). Additionally, we may capture
in each position as many lines as we want on different
y-coordinates. Of course, this provides a large amount
of input data. But we need this amount to handle the
approximation of the target parameters at the begin-
ning and to get the desired accuracy at the end.

2.3 Camera Model

Theoretically, each line scan camera can be consid-
ered as a special case of a matrix camera because they
differ only on the shape of the sensor while optics and
geometry are the same. Thus, we can describe line
scan cameras with the same camera model. As com-
mon in computer vision we use a pinhole model with
radial symmetric distortion.

Normally, for each camera we need 6 exter-
nal parameters (the rotation angles ω, φ, κ and the
translation defined by the perspective center O =
(Ox, Oy, Oz)

T ) and 5 internal parameters (the prin-
ciple point (Hu,Hv), the camera constant c and two
distortion parameters A′, A′′). Thus, for our stereo
system consisting of two cameras we need 24 parame-
ters. But this yields only for one single captured image
line. For each further image line we need another 12
external parameters (6 for each camera).

However, we can reduce the number of free parame-
ters if we take into account the co-planarity and the fix
geometry of our stereo system. As shown in figure 3
we consider all relationships between the cameras in a
sensor coordinate system whose xz-plane matches the
joint viewing plane of the cameras.

baseline b
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z
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sensor line 1 sensor line 2
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perspective center 1 perspective center 2

c1 c2

Figure 3. Internal parameter of the stereo system

To define joint internal and external sensor param-
eters we align the x-axis of our sensor coordinate sys-
tem to the line between the perspective center of both
cameras and fix the origin in the center. Thus, the

only parameter for translation is the baseline b. Be-
cause we are located within the viewing plane the ro-
tation needs only a single angle φi for each camera
i = 1, 2. Of course, there is also no vertical principal
point. All remaining parameters such as the horizon-
tal principal point Hi, the camera constant ci and the
parameters for radial symmetric distortion A′

i, A
′′
i are

directly taken from the separate camera models. The
outer orientation relates to the stereo sensor as a whole
and can be described by only 6 external parameters.
Naturally, our 2d stereo model is inaccurate, because

in the real world the co-planarity cannot be assumed
to be perfect. Thus we model additionally a symmetric
deviation along the xz-plane with

ε(x, z) = axx+ azz + a0. (1)

We neglect other inaccuracies like vertical distortions
due to their very little influence on line scan cameras.

3 Optimization Approach

3.1 Parameter Sets

The presumptions in section 2 lead to different
classes of parameters. The first parameter class de-
scribes the outer orientation. Let nv be the number of
different target views. Then we yield a set

p1 =

nv∪
i=1

{ωi, φi, κi, xi, yi, zi} (2)

of outer parameters, which defines for each target view
the coordinate transformation from the 2d and 3d ge-
ometric parameters of the target into the sensor coor-
dinate system shown in figure 3.
The second parameter class describes the internal

parameters of the stereo system with

p2 = { b, c1, c2, φ1, φ2, h1, h2,

A′
1, A

′
2, A

′′
1 , A

′′
2 , ax, ay, a0 }.

(3)

The calibration target is described by two parameter
classes defining the 3d geometry of the planes and the
2d position of the lines on the plane surfaces separately.
Because we use a self-made target, neither the planes
nor the lines are perfect. Thus, we have to modulate
curved surfaces and curved lines, respectively. To get a
sufficient approximation we model each plane through
a 3rd degree Bezier segment using 16 nodes in a fixed
x-y-grid where only z-components are free. If we have
np different planes of the target, then we yield a set of
plane parameters with

p3 =

np∪
i=1

{z(1)i , z
(2)
i , . . . , z

(16)
i }. (4)

For modulating the lines we take polynomials of 3rd
degree. Because all lines are either vertical or diagonal
we use for each line a function of the form

x = f(y) = ay3 + by2 + cy + d. (5)

Let nl be the number of all lines. Then we yield the
set of line parameters with

p4 =

nl∪
i=1

{ai, bi, ci, di}. (6)
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But the parameter sets p3 and p4 cannot describe
the calibration target completely. In addition, we need
a mapping

π(i) = j (7)

which assigns to each line i ≤ nl one plane j ≤ np.

3.2 Objective Function

In computer vision many calibration approaches for
single cameras use space resection calculating pixel
residues for the numerical optimization of the inner and
outer camera parameter. To increase the numeric sta-
bility we optimize in our approach the stereo system as
a whole. Thus, it is more suitable to calculate residues
using the distances between reconstructed points. Our
residues are based on the distances between intersec-
tion points and triangulated points. An intersection
point arises where a target line meets the joint viewing
plane. We obtain the appropriate triangulation point
by triangulation of corresponding pixels of the same
target line. A schematic illustration of reconstructed
points on the joint viewing plane is given in figure 4.
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Figure 4. Intersection and triangulation points

Let u1(k, i) and u2(k, i) be corresponding pixels see-
ing in target view k ≤ nv the same line i ≤ nl. Then
we calculate the intersection point by

r(k, i) = fsec(ωk, φk, κk, xk, yk, zk,

z
(1)
π(i), . . . , z

(16)
π(i) , ai, bi, ci, di),

(8)

which is a function working on standard geometry.
And we calculate the triangulation point

s(k, i) = ftri(u1(k, i), u2(k, i), b, c1, c2, φ1, φ2,

h1, h2, A11 , A
′
1, A

′
2, A

′′
1 , A

′′
2)

(9)

working on 2d photogrammetry between the corre-
sponding pixels calculated separately for j = 1, 2 with

uj(i, k) = fcor(G
(j)
k , i, ax, ay, a0) (10)

where G
(j)
k is the original image information on tar-

get view k. In function fcor we apply at first a 1d
image operation detecting the pixel coordinates of the
appropriate line i. Then we consider the co-planarity
deviation given in equation 1 whereby we calculate the
effects on the pixel coordinate and correct the original
pixel coordinates accordingly.

Of course, the distance between the reconstructed
points from the equations 8 and 9 should be minimal.
Let Lk ⊂ {1, 2, . . . , nl} be the set of lines captured on
target position k. Then we yield our objective function
by summing all squared residues with

nv∑
k=1

∑
i∈Lk

∥s(k, i)− r(k, i)∥2 → min . (11)

3.3 Linearizing and Least-Squares Adjustment

The optimization problem of equation 11 can be
solved by linearizing and least-squares adjustment.
But the system of equations that we get is very large
and we need feasible start values as well as a workable
optimization strategy. The only known values at the
beginning are approximations of the calibration target.
From this we reconstruct as described in [6] for every
target view a set of intersection points and obtain by
direct linear transformation (DLT) the inner and the
outer parameter approximately. Then, the inner pa-
rameter are averaged over all target views because the
sensor construction is fix.
In principle, we now have all initial values to run

a linearizing and least-squares adjustment. But there
are so many approximations, that a simultaneous op-
timization of all parameters would fail. However, we
have to proceed successively. In general we start with
linearizing only the outer parameter p1. If the opti-
mization is converged then we proceed by subjoining
the next parameter classes p2, p3 and p4.
Additionally, we have to exclude permanently some

parameters because the outer orientation p1 depends
directly on the calibration target parameter p3, p4,
and vice versa. We yield reasonable results if we ex-
clude the orientation of one target plane as well as the
orientation of two non-parallel lines on this plane. And
finally, we can only optimize the base line parameter
b ∈ p2 together with the parameter set p4 if we note
the scale of the system. We keep the scale of the sys-
tem fixed by adding an extra equation considering the
averaged width of all markers on the calibration target.
The aimed width is given by an extra scale parameter.

4 Implementation and Results

The presentation of the following results is based on
the realization of two developments: the calibration
target and the stereo line scan camera system. It pro-
vides no general studies but a functional demonstra-
tion of the main approach which is implemented on a
standard PC using the Eigen-library under c++.
The calibration target described in section 2.1 is

made of precisely machined aluminum blocks lami-
nated with standard prints of line pattern. It has a
width of 400 mm and a height of 40 mm. The approxi-
mate values for the plane parameters p3 are taken from
the machine presetting and the approximate values for
the line parameters p4 we take from PDF-drawing.
The stereo line scan camera system consists of two

4k line scan cameras with a lens shift focusing the same
line in a distance of about 1000 mm. With special
equipment we aligned the cameras with a co-planarity
error less than 0.1 pixel. The image capture is trig-
gered and works normally for the purpose of 3d sur-
face reconstruction with a linear unit. But due to our
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claim to abandon a known movement we used for the
calibration process only single captured lines.

The first investigation of our method concerns the
convergence behaviour. If the initial approximations
of the plane and line parameter sets p3 and p4, re-
spectively, are sufficiently precise, then our algorithm
converges in less then 20 iterations. Concerning the
objective function in equation 11 we get mean residues
lower than 15 µm.

Of course, if there is no convergence we cannot get
any results. But the question is now: Are the cal-
culated parameter correct? To answer this question
completely we need an independent measurement sys-
tem which provides for all parameters at least the same
accuracy as our proposed method. However, such mea-
suring facilities we had only for the plane parameters
p3, which we measured by a tactile system with an
accuracy of 5 µm on nine different points per plane.
Table 1 shows a comparison by min, max and mean
deviations on each plane.

plane 1 2 3 4 ∆h

mean 41.7 8.7 −27.8 64.7 21.0
min −14.1 −23.2 −47.1 29.8
max 82.1 11.1 −15.6 109.8
mean 52.3 −19.2 −17.3 54.2 0.0
min −3.5 −33.7 −36.6 19.4
max 92.7 0.5 −5.1 99.4

Table 1. Deviations [µm ] to tactile measurement

Additionally, we compared our calibration results
with the tactile measurement concerning the height of
the target defined by the difference between the means
of upper and lower planes. But actually a deviation in
height implies a scale error which we can easily com-
pensate by changing the scale parameter. The first
part of table 1 shows results with a fixed scale param-
eter derived from the approximations of line parame-
ters. The second part shows results on the same input
data, but with a calculated scale parameter compen-
sating the height error ∆h. We want to note, the mean
residues for the underlying investigation are 14.52 µm,
which is not a bad value for systems of this size.

An indirect, but more comparable investigation of
our calibration method is based on 3d surface mea-
surements. Of course, such investigation depends on
the 3d measuring method itself, but normally the ab-
solute measurement errors are caused by an inaccurate
calibration. However, as shown in table 2 we investi-
gate our method according to the technical guideline
”VDI/VDE 2634-2” where we operate on three propos-
als: the maximum deviation from the exactly known
surface of a sphere and a plane, respectively, as well as
the length deviation between the centers of two spheres
connected by a bar of exactly known length.

investigation our method Sun et.al. [9]

sphere deviation [µm ] 249.4 454.0
plane deviation [µm ] 179.2 229.0
lenght deviation [µm ] 62.2 −

Table 2. Investigation by 3d measurement

Furthermore, we contrast the maximal deviation re-

sults with the quite typical results given in [9]. Of
course, both results are based on different setups and
different reference surfaces, but we can reason that our
proposed calibration is at least as good, especially be-
cause our measuring field is with 400 mm almost twice
as large.

5 Conclusion

We proposed a new calibration method for stereo
line scan camera systems whereby we defined different
parameter classes and an approach working on it. By
using point residues within the viewing plane we de-
fined an objective function which is applicable by lin-
earizing and least-squares adjustment. Our optimiza-
tion approach converges well and although we abandon
on linear movement and a precisely known calibration
target our results are comparable or better then other
line scan calibration methods using such technical re-
quirements. However, this leads to a more general ap-
plicability of line scan cameras in the field of computer
vision.
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