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Abstract

Face features convey many personal information
that promote and regulate our social linkages. Age
prediction using single layer estimation such as aging
subspace or a hybrid pattern is limited due to the com-
plexity of human faces. In this work, we propose Multi-
layer Age Regression (MAR) where the face age is pre-
dicted based on a coarse-to-fine estimation using global
and local features. In the first layer, Support Vec-
tor Regression (SVR) performs a between group pre-
diction by the parameters of Facial Appearance Model
(FAM). In the second layer, a within group estima-
tion is performed using FAM, Bio-Inspired Features
(BIF), Kernel-based Local Binary Patterns (KLBP)
and Multi-scale Wrinkle Patterns (MWP). The perfor-
mance of MAR is assessed on four benchmark datasets:
FGNET, MORPH, FERET and PAL. Results showed
that MAR outperforms the state of the art on FERET
with a Mean Absolute Error (MAE) of 3.00 (±4.14).

1 Introduction

As humans age, myriad changes occur chronically
within the craniofacial complex [1]. Notable soft tis-
sue modifications may be seen across each decade of
adult life that passes. As well, subtle hard tissue or
bony changes slightly alter an overall shape of the hu-
man face, mainly in the dentoalveolar region (portion
of the alveolar bone immediately about teeth). These
age-related changes affect the accuracy and efficacy of
face-related applications [2, 3]. The real-world appli-
cations are very rich and attractive, existing facts and
attitudes from the perception field reveal the difficul-
ties and challenges of automatic age synthesis and es-
timation by computer [4].

The process of age estimation attempts to label a
face image automatically with the exact age (year)
or the age group (year range) of the individual face.
By deriving significant features from faces of known
ages, the age of an individual face can be estimated
by solving the inverse problem using the same feature-
extraction technique. Although many algorithms have
been proposed since 1994 [5], age estimation is still a
challenging problem due to three reasons [6]. First, fa-
cial age progression is uncontrolled and personalised.
Characteristics of aging variation cannot be captured
easily due to the large variations conveyed by human
faces. Facial aging effects are manifested in differ-
ent forms during different ages. While facial aging
effects are predominantly manifested in the form of
facial shape variation during formative years, textu-
ral variations in the form of wrinkles and other skin
artefacts take precedence over shape variations during

later stages of adulthood. Hence, facial aging can be
described as a problem of characterising facial shape
and facial texture as functions of time. Second, there
is no complete facial aging dataset with chronologi-
cal ages. Developing facial growth models or building
characterisations of facial aging begins with identify-
ing the appropriate form of data that provide a fair
description of the event. The data could be individual-
specific or population-specific. It is hard to collect a
large facial image set of people throughout their life
which are sufficient to present detailed aging progres-
sion. Third, it is difficult to define an absolute aging
pattern which can be used to quantify one particular
age.

This paper proposes multi-layer age regression for
face age estimation. The performance is compared
with the state-of-the-art algorithms and assessed on
four popular datasets: FGNET [7], FERET [8],
MORPH [9] and PAL [10].

2 Feature Representation

This section presents four popular state-of-the-arts
feature descriptors for face age estimation: Facial Ap-
pearance Model (FAM) [11], BIF [12], Kernel-based
Local Binary Patterns (KLBP) [13] and Multi-scale
Wrinkle Patterns (MWP) [14].

2.1 Facial Appearance Model

FAM is a generative parametric model that consists
of shape, texture and combined appearance of a hu-
man face. It is a model where PCA is used to project
high dimension of face shapes and textures into a low
dimension of principal component parameters. The
pertinent equations of FAM are summarized, for full
description about this method, please refer to Cootes
et al. [11]. Let s and t denote a synthesized shape and
texture of a face image in the reference frame, and let
s̄ and t̄ denote the corresponding sample means. New
instances are now generated by adjusting the principal
component scores, bs and bt in

s = s̄ + Φsbs (1)

t = t̄ + Φtbt (2)

where Φs and Φt are matrices of column eigenvectors of
the shape and texture dispersions estimated from the
training set. To obtain a combined shape and texture
parameterisation, c, the values of bs and bt over the
training set are combined into

b =

[
Wsbs

bt

]
=

[
WsΦ

T
s (s− s̄)

ΦT
t (t− t̄)

]
(3)
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A suitable weighting between pixel distances and pixel
intensities is carried out through the diagonal matrix
Ws. To make the normalised measures of pixel dis-
tance and pixel intensities commensurate, the shape
model scores are typically weighted by the square root
of the ratio between the sums of the texture and shape
eigenvalues.

To recover any correlation between shape and tex-
ture, the two eigen-spaces are usually coupled through
a third principal component transform as

b = Φcc =

[
Φc,s

Φc,t

]
c (4)

and b is the FAM features of each image.

2.2 Bio-inspired Features

BIF have shown good performance for age estima-
tion [12]. A specially-designed BIF with two layers: the
simple layer S1 and complex layer C1. The S1 units
correspond to the cells in the primary visual cortex.
They are typically implemented with the convolution
of an image with a Gabor filter defined as

G (x, y) = exp

(
−x
′2 + γ2y′2

2ζ2

)
× cos

(
2π

χ
x′
)

(5)

where x′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ
are the rotations of the Gabor filters for angle θ which
varies between 0 and π. The aspect ratio is fixed as
γ = 0.3, the effective width ζ, the wavelength χ as
well as the filter sizes s were adjusted as in [12]. The
orientation θ varies from 0 to π uniformly with dif-
ferent intervals, resulting in different numbers of total
orientations, such as 4, 6, 8, 10, and 12. The C1 units
correspond to cells which are robust to shift and scale
variations. They can be calculated by pooling over the
preceding S1 units with the same orientation but at
two successive scales. “MAX” pooling operator and
“STD” normalization operator are two C1 features ex-
tracted from the S1 layer. Both operators in the C1

layer are finally concatenated into a single feature vec-
tor f as,

f = ΥMAX,STD (Re (I ∗G)) (6)

where I is a 2D image and Υ denotes two consecutive
operations of “MAX” and “STD” on the convolved im-
age. In this work, the feature vector of f is 7464 units.

2.3 Kernel-based Local Binary Patterns

According to Ylioinas et al. [13], the sparse nature
of LBP representation is improved by the proposed
kernel estimator. A face image is first divided into
a set of LBP overlapping patches of a size 13 × 13
pixels, each patch overlapping its vertical and horizon-
tal neighbours by 4 units. With a face image of size
76 × 76, this results 64 patches [13]. In a particular
patch, it is decomposed into two complementary com-
ponents, sign and magnitude. The sign component is
coded using the conventional LBP operator defined as

LBPS
P,R =

P−1∑
p=0

T (gp − gc)2p (7)

where gc corresponds to the grey value of the center
pixel, gp refers to grey values of P equally spaced pix-
els on a circle of radius R, and T defines a thresholding
function with T (x) = 1 if x ≥ 0 and T (x) = 0 other-
wise. The magnitude component is defined as

LBPM
P,R =

P−1∑
p=0

T (m̂p, ĉ)2
p (8)

where m̂p is the magnitude of local pixel difference and
ĉ a predetermined threshold value of LBP usually set
as the mean value of local pixel differences in the whole
image. As the magnitude operator encodes the differ-
ence in local pixel intensities, it gives a measure of
contrast. The key idea of LBP is to gain more compre-
hensive image representation by combining these two
complementary descriptions.

In order to estimate the probability distribution of
LBP-like random variables, the kernel is defined as

Kĥ

(
l̂|l̂′
)

= ĥP−d̃(l̂,l̂
′)
(

1− ĥ
)d̃(l̂,l̂′)

(9)

where l̂ and l̂′ are both P -dimensional binary variables,

d̃ is the Hamming distance between them, and ĥ is a
bandwidth parameter. Finally, using the given kernel,
KLBP pattern is defined as

g = {Ψ1Kĥ,Ψ2Kĥ · · · ,ΨnKĥ} (10)

where Ψ ∈ {LBPS
P,R,LBPM

P,R} and n is the total num-
ber of KLBP features of each image.

2.4 Multi-scale Wrinkle Patterns

Ng et al. [14] proposed MWP features for face age
estimation. By deriving wrinkles with the multi-scale
filters across ten face regions, wrinkle patterns are gen-
erated. First, they locate facial landmarks by using the
Face++ detector and then normalize the face by using
a linear transformation. A face template which consists
of ten predefined wrinkle regions is defined. Then, for
each region, they detect wrinkles using Hessian filter
[16] and cross-sectional profile, V, which is defined as

Vŝ (θ) = Iŝ (p1) + Iŝ (p2)− Ic − Iŝ (θ) (11)

where Ic is the current pixel, Iŝ (θ) is the candidate
pixel in a particular direction θ, Iŝ (p1) and Iŝ (p2) are
background pixels away from the candidate pixel, and
ŝ is the filter scale. If the Ic and Iŝ (θ) belong to the set
of wrinkles, V has a large positive value. If the Ic and
Iŝ (θ) belong to the background, they have similar val-
ues, thus V has a negative value or is near to zero. For
each ŝ, confidence array of each pixel is increased by
one if V is positive and larger than a predefined thresh-
old. Wrinkles are detected by selecting the maximum
confidence array of each pixel. Finally, the detected
wrinkles of each region are represented as wrinkles in-
tensity, fi, and density, gi, that defined as

fi = log

wt∑
x=1

ht∑
y=1

Ii (x, y) (12)

gi =
area1 (i)

area2 (i)
(13)
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Figure 1. Flow chart of MAR. It consists of two layers: layer X and layer Y. Layer X is the parameters of
FAM while layer Y is the features of FAM, BIF, KLBP and MWP. First, SVR 0 estimates the age of input
using FAM parameters. Then, the predicted age of layer X is used to select an age group of layer Y. Each
age group has a fixed range of ages. If age group 3 is selected , then SVR 3 is used to train the features
in age group 3 and finally predict the age of input in layer Y. The output of both layers is a real number
(predicted age) instead of a class. Dotted arrow indicates only one of the age groups will be selected. Note
that this figure was redrawn from FERET.

where wt and ht are the width and height of I, area1
is the wrinkle area found in a particular region i and
area2 is the area of region i. MWP pattern is generated
by combining both features into a single vector as

h = {f1, g1, · · · , fn, gn, } (14)

where n is the total number of MWP features.

3 Multi-layer Age Regression

MAR consists of two layers, layer X and Y as shown
in Figure 1. In layer X, features are represented by
the FAM parameters, while in layer Y, features are
represented by descriptors such as FAM, BIF, KLBP
and MWP. Let ΛX as the predicted age of layer X and
the prediction is defined as

ΛX = f (b) (15)

where f (·) is an estimation function by Support Vector
Regression (SVR).

In the layer Y, a between-group classification is im-
plemented based on ΛX. Let the sorted features in
different age groups as {G1,G2, · · · ,Gn} where n is
the total number of age groups of each dataset and
ΛY as the predicted age of layer Y. The prediction is
defined as

ΛY =


f1 (G1,d) if ΛX < a1
f2 (G2,d) if a1 ≤ ΛX < a2
f3 (G3,d) if a2 ≤ ΛX < a3
f4 (G4,d) if a3 ≤ ΛX < a4
f5 (G5,d) if a4 ≤ ΛX

(16)

where fi is one particular SVR model, Gi is the train-
ing set, d is the testing set of an input image, and both
Gi and d are the same feature selected from {b|f |g|h}.

In Figure 1, SVR 0 estimates the age of input using
FAM parameters. Then, the predicted age of layer X is
used to select an age group of layer Y. Each age group
has a fixed range. If age group 3 is selected, then SVR
3 is used to train the features in age group 3 and finally
predict the exact age of I in layer Y. Based on such

design, the age of a face image is estimated by a coarse-
to-fine approach where the first layer focuses on using
regression to predict the age, which will then be used
in selecting an age group, while layer Y concentrates
on predicting the exact age within the group.

4 Experimental Results

In this work, four datasets, FGNET (with 1002 im-
ages), MORPH (with 2000 randomly selected images),
FERET (with 2366 images) and PAL (with 576 im-
ages), are utilized for performance validation. For
FGNET, a Leave One Person Out (LOPO) and 68
landmark points are used as the evaluation protocol
while the remaining datasets are based on 10-folds
cross validation and 83 landmark points of FACE++
detector [15]. Due to many works of FGNET are using
68 points in the experimental setup, the same land-
mark is used for a fair comparison. Both training and
testing datasets are disjoint. In FAM modelling, a 95%
of the parameters variability are preserved during the
dimension reduction of PCA in the training set. FAM
fitting is not considered in this experiment as the fit-
ting error might increase the error of age estimation
[17]. Due to different features have different input di-
mensions, the SVR parameters are varied across dis-
tinct descriptors and datasets. These parameters are
derived from a grid search approach [13].

Table 1 shows a comprehensive analysis of face age
estimation with and without MAR. Overall, the pro-
posed MAR methods, FAM-FAM and FAM-BIF per-
form the best on FERET, with MAE of 3.00 (±4.14)
and on PAL with the MAE of 3.43 (±2.71), respec-
tively. However, FAM and BIF perform the best on
FGNET and MORPH with MAE of 5.39 (±5.63) and
3.98 (±3.20) respectively.

The lowest MAE of each method is obtained on
FERET. Overall, results showed that MAR improves
MAE significantly on FERET compared to the existing
methods. Although MAE of FAM-FAM is the lowest,
other results are comparable. For example, the results
of FERET showed that FAM-FAM hits a MAE of 3.00
compared to FAM-MWP is 3.36, FAM-BIF is 3.28 and
FAM-KLBP is 3.29; the results of MORPH showed
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Table 1. Experimental results of face age estimation with MAR. Bold - the lowest MAE within one particular
dataset, italic - the lowest MAE of each method amongst the datasets.

Datasets
Single-layer Age Estimation, MAE (STD) Multi-layer Age Estimation, MAE (STD)

FAM BIF KLBP MWP FAM-FAM FAM-BIF FAM-KLBP FAM-MWP

FGNET 5.39 (5.63) 5.59 (5.97) 6.09 (6.43) 7.34 (7.54) 5.48 (6.67) 5.49 (6.61) 5.79 (6.67) 6.19 (6.85)

FERET 3.34 (3.26) 3.57 (3.26) 3.91 (3.24) 4.16 (3.83) 3.00 (4.14) 3.28 (4.02) 3.29 (4.07) 3.36 (4.14)

MORPH 3.99 (3.28) 3.98 (3.20) 4.02 (3.22) 5.16 (4.35) 4.18 (3.63) 4.06 (3.55) 4.06 (3.47) 4.08 (3.51)

PAL 6.96 (5.92) 5.94 (4.60) 6.09 (5.09) 7.65 (6.61) 6.72 (6.64) 3.43 (2.71) 6.33 (6.28) 6.63 (6.65)

that FAM-MWP achieves a MAE of 4.08 compared to
FAM-FAM is 4.18, FAM-BIF is 4.06 and FAM-KLBP
is 4.06. These results showed that MAR is comparable
to the state of the art for face age estimation.

5 Conclusion

This paper has proposed a novel method, MAR, for
face age estimation. It makes use of facial appear-
ance model and local features in a coarse-to-fine es-
timation for face age estimation. Experiment results
showed that MAR outperforms the state of the art with
a MAE as low as 3.00 (±4.14) on FERET, and 3.43
(±2.71) on PAL. FAM performs the best on FGNET
with MAE of 5.39 (±5.63) and BIF performs the best
on MORPH with MAE of 3.98 (±3.20). Overall, the
wrinkle based algorithm, MWP has the best computa-
tional time. Future works involve investigation on al-
ternative descriptors, age group overlapping issue and
increase the sample size for the computer algorithms.
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