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Abstract

This paper presents an end-to-end pixelwise fully au-
tomated segmentation of the head sectioned images of
the Visible Korean Human (VKH) project based on
Deep Convolutional Neural Networks (DCNNs). By
converting classification networks into Fully Convolu-
tional Networks (FCNs), a coarse prediction map, with
smaller size than the original input image, can be cre-
ated for segmentation purposes. To refine this map
and to obtain a dense pixel-wise output, standard FCNs
use deconvolution layers to upsample the coarse map.
However, upsampling based on deconvolution increases
the number of network parameters and causes loss of
detail because of interpolation. On the other hand,
dilated convolution is a new technique introduced re-
cently that attempts to capture multi-scale contextual
information without increasing the network parame-
ters while keeping the resolution of the prediction maps
high. We used both a standard FCN and a dilated con-
volution based FCN for semantic segmentation of the
head sectioned images of the VKH dataset. Quanti-
tative results showed approximately 20% improvement
in the segmentation accuracy when using FCNs with
dilated convolutions.

1 Introduction

Semantic segmentation of medical images is an
important component of many computer aided de-
tection (CADe) and diagnosis (CADx) systems.
Deep-learning-based segmentation approaches includ-
ing Fully Convolutional Networks (FCN) [1], DeepLab
[2] and U-Net [3], have gained significant improve-
ments in performance over previous methods by ap-
plying state-of-the-art CNN based image classifiers and
representation to the semantic segmentation problem
in both domains. Semantic segmentation involves as-

∗The first two authors contributed equally to this work.

signing a label to each pixel in the image. Learning
these dense pixel labels for each image in an end-to-
end fashion is desired in many medical imaging ap-
plications. The availability of large annotated training
sets and the accessibility of affordable parallel comput-
ing resources via GPUs have been paving way for seg-
mentation based on deep learning. Systems based on
deep convolutional neural networks (CNNs), like FCN,
have outperformed more traditional “shallow” learning
systems that rely on hand-crafted features. One ad-
vantage of CNNs is their build-in ability to learn fea-
tures that are invariant to local image transformations.
They can learn increasingly abstract layers that are
useful for image classification [4, 5]. However, seman-
tic segmentations tasks might suffer from this increased
invariance to local transformations where dense pre-
diction results are required. Furthermore, the com-
bination of max-pooling and downsampling layers in
CNNs decrease the spatial resolution of the feature
space which make dense prediction at the full image
resolution difficult [1]. Recently, Wang et al. [5] ad-
dressed these issues when applying CNNs for seman-
tic image segmentation. In order to produce denser
feature maps, downsampling layers are removed from
the last few max pooling layers and instead introduce
multi-scale filters in the subsequent convolutional lay-
ers [5]. The multi-scale filters are realized as ‘dilated
convolution’ layers that allow the feature maps to be
computed at a higher sampling rate. Dilated convo-
lutions effectively enlarge the field of view without in-
creasing the number of parameters or the amount of
computation [5]. Dilated convolutions can be used to
resample a given feature layer at multiple rates dur-
ing convolution. This effectively allows the CNN to
compute features at different scales of the input im-
age, similar in spirit to spatial pyramid pooling [6].

While standard FCNs have been widely applied to
the biomedical imaging field [7, 8, 9, 10, 11], CNNs
employing dilated convolutions have not yet been well
studied. In this study we compare an off-the-shelf
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CNN with dilated convolutions (DeepLabv2 [5]) with
the standard FCN [1] and show its advantage to the
task of semantic segmentation in biomedical imaging.

The rest of this work is structured as follows. In
section 2, we briefly present standard FCNs [1] and
dilated-convolution-based FCNs for semantic segmen-
tation. Experiments will be addressed in section 3.
Section 4 includes discussion. Summary and conclu-
sion can be found in section 5.

2 Method

2.1 Standard fully convolutional networks for se-
mantic segmentation

In end-to-end semantic segmentation, the idea is to
directly predict a label for each pixel in the input im-
age. To achieve a dense and pixel-to-pixel label pre-
diction, one must integrate the local pixel-level infor-
mation with the wider global context information.

Existing state-of-the-art networks for semantic seg-
mentation based on fully convolutional networks [1] are
typically designed based on integration of multi-scale
contextual information, relying on successive spatial
pooling and subsampling [12], to obtain a prediction.
Due to the fact that both pooling and convolution
reduce the spatial extent of the feature maps, addi-
tional unpooling and deconvolution (including bilinear
upsampling) layers are required to make a final end-
to-end pixelwise prediction.

2.2 Dilated convolution and semantic segmenta-
tion

The drawback of using deconvolution layers is that
they increase the number of parameters (weights) in
the network. To resolve this issue, [12] and [5] have re-
cently developed a new convolutional network module
based on dilated convolution (also known as ‘atrous’
convolution), which can compute the responses of var-
ious layers without any loss in spatial resolution.

Let Iin ∈ RP×Q, k ∈ RM×N and Iout ∈ RP×Q be
input image, arbitrary discrete filter kernel and output
image, respectively. Further let r ∈ N be convolution
rate or dilation factor, with N being the set of natural
numbers. The discrete r-dilated convolution in 2D is
then defined as [5]

Iout(i, j) = [Iin ∗r k](i, j)

=

bM
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m=d−M
2 e

bN
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Iin(i + r ·m, j + r · n)k(m,n)

=

bM
2 c∑

m=d−M
2 e

bN
2 c∑

n=d−N
2 e
k(i + r ·m, j + r · n)Iin(m,n),

(1)

where [·∗·], d·e and b·c denote discrete convolution, ceil
and floor operators respectively. Here we set P = Q
and M = N , to achieve both square input images and
square filter kernels. Note that Eq. (1) is a generalized
definition of the 2D discrete convolution (this can be
verified easily by setting the dilation factor r to 1).

The advantage of using dilated convolutions is that
they can be considered as convolution of the original
image with the filter kernel, upsampled by a factor r,
hence they increase the receptive fields of the neurons
without losing spatial resolution. More precisely, dur-
ing the upsampling of the kernel, we are effectively
appending some zeros in between filter values (see Fig.
1).

 

Figure 1: Dilated Convolution.

3 Experiments

Data: For our experiments, we selected sectioned
images of the head from of the Visible Korean Human
(VKH) dataset of the male cadaver. This dataset has
been created by Prof. Min Suk Chungin, Depart-
ment of Anatomy, Ajou University School of Medicine,
Suwon, South Korea. In this dataset, the sectioned
anatomical images have been photographed using a
digital camera, Canon EOS 5D, with 12 mega pix-
els resolution and 0.1 mm pixel size, and they have
been stored as 5616×2300 color images (see [13] for
more information). We cropped all images to a size
of 1024×1024 that covers the entire head region. A
typical cross-section of the VKH dataset is shown in
Fig. 2. Manual segmentation of each cross-sectional
slice was performed in PLUTO1 in order to label 8
regions, including background, skull, teeth, cerebrum,
cerebellum, nasal cavities, eyeballs, and lenses.

Figure 2: A typical cross-section of the (VKH) dataset.
The 3D volume in the bottom left corner has been
rendered by VAA3D [14].

1http://pluto.newves.org/trac
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Experiments: We investigated the following three
use cases of FCNs and dilated convolution based FCNs:

1) Performance comparison of standard FCN vs. di-
lated convolution based FCN: to compare the resulting
segmentation accuracy and to show the advantage of
utilizing dilated convolution in FCNs, we conducted
an experiment in which a random subset of 80% of the
images was used for training, while 20% of the images
were reserved for testing the networks’ performance.

2) Label propagation based on sparse annotation: the
basic idea here is that we are interested in labeling a
random subset of the slices to be considered as ground
truth (sparse annotation), and let the labels propagate
through the whole remaining slices in the dataset by
the trained network (label propagation). To this end,
in the second experiment we swapped the related per-
centages of the slices for training and testing (20% for
training, 80% for testing).

3) Generalizability capability: to show the generaliz-
ability of the trained network, in the third experiment
we applied the trained DeepLabv2 model (trained on
80% of the slices from the dataset introduced in sec-
tion 3) to another unseen VKH dataset, for which no
ground truth was available, and we aimed to qualita-
tively evaluate the performance of the network.

Implementation: All experiments were con-
ducted on a workstation equipped with one NVIDIA
GeFORCE graphic cards, NVIDIA GeForce GTX
1080, and two 3.20 GHz Intel Xeon X5482 processors
with a 64-bit Ubuntu 14.04 and 32 GB RAM mem-
ory. We used Caffe implementations [15] of FCN2 and
DeepLabv23.

Evaluation: We evaluated our results for the first
two experiments both qualitatively and quantitatively.
For the third experiment, lack of ground truth, only
qualitative evaluation was performed. Networks’ per-
formance for quantitative evaluation was measured
based on Dice Similarity Coefficient (DSC).

4 Discussion

All experiments were conducted on 2D RGB images.
Figure 3 illustrates the achieved fully automated seg-
mentation results for the given cross-sectional images
shown in Fig. 2. This figure shows that FCNs based
on dilated convolution could obtain smoother segmen-
tation results with lower false-positive rate (higher ac-
curacy) than the standard FCNs.

In terms of numbers, the quantitative evaluation re-
sults have been summarized in Table 1. To show the
advantage of utilizing dilated convolution in FCNs, for
every individual label in the ground truth, the cor-
responding DSC values both for training and testing
phases have been calculated. Considering the mean
and standard deviation values over all labels especially
in the testing phase and with p-value or significance
level less than 0.01 for Wilcoxon signed rank test, it
is evident that by using dilated convolution the in-
crease in testing DSC performance (∆test) is signifi-
cant (here 19.6% on average, as in Table 1), whereas
at the same time the standard deviation has been
decreased by 11.2%. This indicates that the overall

2https://github.com/shelhamer/fcn.berkeleyvision.org
3https://bitbucket.org/aquariusjay/

deeplab-public-ver2

Table 1: Dice Similarity Coefficient (DSC) in testing
in comparison between FCN and DeepLabv2. The ad-
vantage of using dilated convolutions in DeepLabv2 is
clearly visible in the ∆test values (∆ denotes the dif-
ference between DeepLab and FCN results).

Class Train Test Train-Deep Test-Deep ∆test Test-Deep

FCN-80% FCN-20% Labv2-80% Labv2-20% Labv2-80%

Background 98.6% 98.1% 99.6% 99.6% 1.5% 99.6%

Skull 80.7% 71.6% 93.7% 93.0% 21.4% 99.3%

Teeth 75.1% 52.6% 75.4% 74.3% 21.7% 74.7%

Cerebrum 95.3% 92.2% 98.9% 98.8% 6.6% 98.8%

Cerebellum 78.7% 73.6% 97.6% 97.4% 23.8% 96.6%

Nasal Cavities 60.3% 55.4% 88.2% 88.7% 33.3% 88.7%

Eyeballs 91.7% 77.9% 94.1% 93.9% 16.0% 93.5%

Lenses 76.4% 46.6% 79.9% 78.9% 32.3% 77.2%

Mean 82.1% 71.0% 90.9% 90.6% 19.6% 90.2%

Std. dev. 12.6% 18.6% 9.0% 9.4% 11.2% 9.5%

Min 60.3% 46.6% 75.4% 74.3% 1.5% 74.7%

Max 98.6% 98.1% 99.6% 99.6% 33.3% 99.6%

(a) Standard FCN (b) DeepLabv2

Figure 3: Comparison of the segmentation results.

segmentation accuracy of the network has been im-
proved. The increased contextual information used by
DeepLabv2 is clearly helping the network to achieve
more coherent and less noisy results.

In the second experiment we swapped the related
percentages of the slices for training and testing (20%
for training, 80% for testing). Interestingly, the net-
work could achieve quite the same DSC values, as in
the case with 80% of the slices for training. Quantita-
tive and qualitative results for label propagation can
be found in the last column of Table 1 and in Fig 4-(a),
respectively.

Another important issue to mention here is that the
labeling process of anatomical dataset is in general a
tedious and time-consuming task. In terms of prac-
tical applications, it would be of particular interest
if the labeling process, which has been done for one
dataset, could be generalized to other similar dataset.
Our results from the third experiment showed that the
network was able to achieve comparable segmentation
results as shown in Fig 4-(b).
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(a) Sparse annotation (training based on 20% of the
slices), and the resulted labels propagation (testing
for the remaining 80% of the slices).

(b) Generalizability of the trained network: the
DeepLabv2 network was trained on the dataset ex-
plained in section 3, and it was used for segmenting
the same labels in this unseen dataset.

Figure 4: Practical applications of the dilated-convolution-based trained network.

5 Summary and Conclusion

We provided experimental results that show the ad-
vantage of using dilated convolution in deep fully con-
volutional architectures. Utilizing dilated convolutions
allows the increase of the DCNN’s receptive fields while
keeping the resolution of feature maps high, allowing
for denser semantic segmentation results at the final
layers. We investigated the feasibility of the label prop-
agation based on sparsely-trained model, and the gen-
eralizability of the network for segmenting an unseen
dataset. Training and quantitative testing on the VKH
dataset shows the applicability of these methods for
biomedical imaging.
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