
Automatic Pencil Sketch Generation by using Canny Edges

Ryota OKAWA Hiromi YOSHIDA Youji IIGUNI

Graduate School of Engineering Science, Osaka University;
1-3 Machi-kane-yama, Toyonaka, Osaka 560-8631, JAPAN

okawa@sys.es.osaka-u.ac.jp
{ yoshida, iiguni }@sys.es.osaka-u.ac.jp

Abstract

This paper presents a system that automatically con-
verts 2D raster images to sketch style. The proposed
method first extracts edges at different resolutions. Then,
these shapes and brightness are varied and merged. This
process expresses trial and error in the actual sketch.
Experimental results showed that the proposed method
produces images with natural appearance.

1. Introduction

In recent years, many NPR (Non-Photorealistic Ren-
dering) methods have been proposed. NPR is a technique
for generating images with artistic expressions, not real-
istic representation. Since artistic images are visually
appealing and impressive, NPR is applied to advertise-
ments, entertainment such as animation and video games.
Among the art style, sketch painting is a style that eve-
ryone familiar with and has a unique softness. Sketch-like
NPR methods take 3D model [1], 2D vector image [2], or
2D raster image [3,4,5] as input. Although 3D models and
2D vector images contain rich information on object
shapes, it is relatively difficult to prepare these. Therefore,
it is required to generate sketch-like images from 2D
raster images.

For research focusing on line drawings, there are re-
search by Son et al. [3] and research by Lu et al. [4]. Son
et al. proposed a method for extracting perceptually im-
portant lines by constructing likelihood of true contour
and tracking the ridges. Lu et al. focused on dividing into
short strokes when humans draw long lines and proposed
an approach that imitated them.

In this paper, we propose a system that automatically
converts 2D raster images to sketch style. The proposed
method distorts the edge of the input image with several
patterns, adds fluctuation of brightness, and combines
them. This process imitates the variation in line strength
and shape seen in handwritten sketches.

2. Pencil Sketch

Since it is difficult to draw accurate lines, people draw
lines with trial and error. In particular, the important
contours are drawn several times with slightly distorted
lines [1]. In addition, thickness and density of the lines
vary. Lu et al. [4] reported that long lines are drawn di-
vided into short strokes. In summary, the following
features can be seen in hand drawn sketches:

A) Shape of lines are shaken
B) Variation in line brightness

C) Main contours are drawn with multiple lines
D) Long lines are drawn divided into short strokes

An example of actual sketch is shown in Figure 1. We can
see the above features in the image.

Figure 1: An example of hand-written sketch

3. Proposed Method

In the proposed method, the edges of the input image
are distorted by several patterns, and the variation of the
blackness is added before combining. An overview of
proposed method is shown in Figure 2. Firstly, edges are
extracted from an image. The main edges are distorted
strongly, and the texture edges are weakly distorted. Next,
the brightness of each layer is varied. Then synthesize
them and apply the texture. Less important lines are
drawn only once and the main contour lines are drawn 2-3
times.

Figure 2: An overview of the proposed method

15th IAPR International Conference on Machine Vision Applications (MVA)
Nagoya University, Nagoya, Japan, May 8-12, 2017.

© 2017 MVA Organization

09-13

256

3.1 Pre-processing

We applied median filter and bilateral filter [6] to the
input image as a pre-process. This process has two aims:
The first aim is to reduce noise in the image. The second
aim is to smooth texture edges while preserving the main
outline. This makes it easier to extract main contours in
the next step. We applied median filter with 3×3 window.
The standard deviation of the color space and the coor-
dinate space of the bilateral filter are 30 and 5,
respectively.

3.2 Contour extraction

In hand-drawn sketches, main contours are drawn
several times, but texture edges are drawn only once.
From such observations, we generate two images, the
edge image 𝐸1 which including only the main outline
and the edge image 𝐸2 which including the texture
edges. These images are processed separately in later
process.

We use Canny operator [7] as an edge detector. By
setting the standard deviation and the thresholds appro-
priately, we can extract only main edges. Also, the Canny
edge has a nearly constant line width and is easy to han-
dle. If the input is a colored image, use the color version
of the Canny edge [8]. The gradient magnitude used for
calculating the Canny edge is obtained by the following
equation:

∇x𝐼 ≔ MaxAbs{ Sobelx[𝑅], Sobelx[𝐺], Sobelx[𝐵] } (1)

∇y𝐼 ≔ MaxAbs{ Sobel𝑦[𝑅], Sobel𝑦[𝐺], Sobely[𝐵] } (2)

‖∇𝐼‖ ≔
1

√2
√(∇x𝐼)2 + (∇y𝐼)

2
 (3)

Here, Sobel [⋅] is a Sobel operator, and MaxAbs (⋅) is a
function that returns the maximum absolute value among
arguments. We can also use FDoG filter [9] instead of
Sobel filter to compute Canny edges.

In order to simplify edges, simple mask processing
was performed on the detected binary Canny edges. The
mask is shown in Figure 3. * Represents an arbitrary
pixel value. We also apply the masks which rotated Fig-
ure 2 by 90, 180 and 270 degrees. The unnatural
wiggling of the pixel is eliminated by the mask process
showed in Figure 3(a). By mask processing showed Fig-
ure 3(b), lines becomes thinner and anti-aliasing is
applied to the corner. The effect of mask processing is
shown in Figure 4. It can be confirmed that the lines are
smoothed by the mask processing.

We use Canny operator with 𝜎 = 2.0 as main con-
tour 𝐸1. 𝜎 = 0.6 is used as the edge image 𝐸2 with
texture. Figure 5 shows the results of edge detection.
Figure 5 (a) is the input image, (b) is the Canny edge 𝐸1
of the main contour, and (c) is the Canny edge 𝐸2 in-
cluding the texture.

(a) Simplification (b) Anti-aliasing
Figure 3: Masks

(a) without mask processing (b) after mask processing
Figure4: An example of mask processing

(a) A preprocessed image (b) Main contours (𝐸1)

(c) Main contours and texture edges (𝐸2)
Figure 5: Canny edges

3.3 Contour distortion

In this section, we describe a method to distort lines.
This process imitates the feature B described in Section 2.
Although there is a study that adds fluctuation by sinusoid
function to vectorized strokes [1], it is difficult to vec-
torize raster images and apply these methods. Therefore,
in the proposed method, we don’t vectorize the line but
distort the line in the raster form. Let 𝑇𝑥 and 𝑇𝑦 are the
movement amounts of the pixels in the x and y directions,
respectively. Distorted edge 𝐷 is computed by the fol-
lowing equation:

𝐷(𝐩) = 𝐸 (𝑥 − 𝑇𝑥(𝐩), 𝑦 − 𝑇𝑦(𝐩)) (4)

In many cases, the referenced coordinates are
non-integers. In that case, the pixel value is interpolated
by bicubic interpolation. The vector fields 𝑇𝑥 , 𝑇𝑦 are
generated by the sum of K Gaussian kernels:

𝑇x(𝐩) = ∑ 𝑢𝑖 exp (−
‖𝐩 − 𝐩𝐢‖

2

2𝜎2
)

𝐾

𝑖=1

 (5)

𝑇𝑦(𝐩) = ∑ 𝑣𝑖 exp (−
‖𝐩 − 𝐩𝐢‖

2

2𝜎2
)

𝐾

𝑖=1

 (6)

Since the generated vector field is the sum of the Gauss-
ian kernel, it is smooth. The kernel center 𝑝𝑖 are set
randomly. The weights 𝑢𝑖 and 𝑣𝑖 are sampled from
uniform distributions. For major edges, we set σ and
weight large. For texture edges, we set σ and weight
smaller.

We denote images that distorted the main edge 𝐸1 in
two ways as 𝐷1, 𝐷2. Let 𝐷3 be the image distorting
the edge 𝐸2 including the texture. Figure 6 shows an
example of a distorted edge.

257

Figure 6: An example of line distortion (black lines: 𝐸1,
red lines: 𝐷1)

3.4 Blackness variation

In this section, we describe a method to vary black-
ness of lines. The purpose of this process is two-fold:
one is to break long lines by saturating the luminance
values and divide them into short strokes (the feature D
described in Section 2). The other is to reproduce the
fluctuation of the strength of the line drawn by a person
by the weak fluctuation of blackness (the feature B in
Section 2). Generate a map 𝐹 of intensity of luminance
fluctuation by the following equation:

𝐹(𝐩) = ∑ 𝑤𝑖 exp (−
‖𝐩 − 𝐩𝑖‖

2

2𝜎2
)

𝑖

 (7)

Centers of kernel 𝐩𝑖 are set randomly. In order to make
the distance between centers more than a certain value,
we use Poisson Disk Sampling (PDS)[10,11] to placing
centers of kernel. The weights 𝑤𝑖 are sampled from
uniform distributions. F is used to vary the luminance of
the distorted edge image 𝐷 ∈ [0,255]𝑁 by the follow-
ing equation:

𝑉(𝐩) = MAX(0, 𝐷(𝐩) − 𝐹(𝐩)) (8)
An example is shown in Figure 7. Let 𝑉1, 𝑉2, 𝑉3are
blackness fluctuated image of 𝐷1, 𝐷2, 𝐷3 , respectively.
Let 𝑀 is the merged image of them:

𝑀 ≔ 𝑉1𝑉2𝑉3 (9)
This merging process is imitation of the feature C de-
scribed in Section 2. An example is shown in Figure 8.
Figure 8(a) (b) are main contours, (c) is main contours
and texture edges, and (d) is the merged image of them.

(a) 𝐷1 (b) 𝐹

 (c) 𝑉1
Figure 7: Blackness variation

3.5 Texture generation and applying

As a final step, we apply the pencil texture to the gen-
erated image. Hereinafter, a simple pencil texture
generation method is described. It is an easy method but
can generate texture of sufficient quality.

The pencil texture 𝑇 is generated by the following
equation:
 𝑇1(𝑥, 𝑦) = sampled from 𝑈(0,255) (10)

𝑇2(𝑥, 𝑦) = {

255, with probability 0.5

sampled from 𝑈(0,255),
 with probability 0.5

 (11)

 𝑇(𝑦, 𝑥) = 255 − (𝑇1(𝑥, 𝑦) + 𝑇2(𝑥, 𝑦)) (12)

Figure 9(a) shows the generated pencil texture.

(a) 𝑉1 (b) 𝑉2

(c) 𝑉3 (d) 𝑀
Figure 8: An example of variation of blackness

We use a stripe pattern texture for imitation of rough

painting. Figure 9(b) shows an example of stripe pattern
texture. The input image is binarized by discriminant
analysis method [12] and a stripe pattern is applied to the
black region.

(a) A generated pencil texture (b) A stripe pattern
Figure 9: Examples of texture

4. Experiments

We compiled and executed the program in Visual C ++.
The specifications of the PC used in the experiment is
Intel Core-i5 3.20 GHz CPU and memory 8.00 GB. The
execution time was about 2.5 seconds for the image of
size 960 ×480. It takes about 10 seconds if we use
FDoG-based Canny edges.

Figure 10 shows comparison to Lu et al. [4]. The result
of [4] looks detailed drawing. On the other hand, our
result looks quite rough sketch. Figure 11 shows com-
parison to Son et al. [3]. In the results of [3], the main
contours are drawn only once. On the other hand, our
result contains multiple lines for main contours.

258

(a) Result of Lu et al. (b) Our result (c) Our result (FDoG-based)
Figure 10: Comparison to Lu et al. [4]

(a) Result of Son et al. (b) Our result (c) Our result (FDoG-based)
Figure 11: Comparison to Son et al. [3]

5. Conclusion and Future Works

We proposed a system that automatically converts 2D
raster images to sketch style. Our method consists of
simple filtering processes. Experimental results showed
that our method reproduces features of handwritten sketch
well. In the future, we would like to use Saliency and
apply our method to video sequences.

References

[1] H. Lee, S. Kwon and S. Lee, “Real-time pencil rendering,”

NPAR, pp.37—45, 2006.

[2] M. Hagiwara, K. Ushida and S. Tsurumi, “Generating

Sketch-like Images from Vector Images Based on the Mod-

eling Approach of Drawing”, The Journal of The Institute of

Image Information and Television Engineers, Vol. 64, No. 9,

pp.1385—1388, 2010.

[3] M. Son, H. Kang, Y. Lee and S. Lee, “Abstract line draw-

ings from 2d images,” Pacific Conference on Computer

Graphics and Applications, pp.333—342, 2007.

[4] C. Lu, L. Xu and J. Jia, “Combining sketch and tone for

pencil drawing production,” NPAR '12 Proceedings of the

Symposium on Non-Photorealistic Animation and Render-

ing, pp.65—73, 2012.

[5] X. Mao, Y. Nagasaka and A. Imamiya, “Automatic genera-

tion of pencil drawing from 2D images using line integral

convolution,” Proc. of the 7th International Conference on

Computer Aided Design and Computer Graphics

(CAD/GRAPHICS’01), pp.240—248, 2001.

[6] C. Tomasi and R. Manduchi, “Bilateral Filtering for Gray

and Color Images,” ICCV '98 Proceedings of the Sixth In-

ternational Conference on Computer Vision, pp.839– 846,

1998.

[7] J. Canny, “A Computational Approach to Edge Detection”,

IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.

8, Issue 6, pp.679—698, 1986.

[8] A. Koschan and M. Abidi, “Detection and classification of

edges in color images,” Signal Processing Magazine, Spe-

cial Issue on Color Image Processing, Vol. 22, No. 1, pp.

64—73, 2005.

[9] H. Kang, S. Lee and C.K. Chui, “Coherent line drawing,”

Proceedings of the 5th international symposium on

Non-photorealistic animation and rendering, pp.43—50,

2007.

[10] R. Cook, “Stochastic sampling in computer graphics”,

ACM Transactions on Graphics (TOG), Vol. 5, Issue 1,

pp.51—72, 1986.

[11] R. Bridson, “Fast Poisson Disk Sampling in Arbi-trary

Dimensions”, SIGGRAPH '07 ACM SIGGRAPH 2007

sketches, No. 22, 2007.

[12] N. Otsu, “A Threshold Selection Method from Gray-Level

Histograms”, IEEE Transactions on Systems, Man and

Cybernetics, Vol. 9, Issue 1, pp.62—66, 1979.

259

