
A Raspberry Pi 2-based Stereo Camera Depth Meter

James Cooper, Mihailo Azhar, Trevor Gee, Wannes Van Der Mark, Patrice Delmas
Georgy Gimel’farb

Department of Computer Science, The University of Auckland, Auckland, New Zealand

Abstract

The Raspberry Pi single-board computer is a low
cost, light weight system with small power require-
ments. It is an attractive embedded computer vision
solution for many applications, including that of UAVs.
Here, we focus on the Raspberry Pi 2 and demonstrate
that, with the addition of a multiplexer and two cam-
era modules, it is able to execute a full stereo matching
pipeline, making it a suitable depth metering device for
UAV usage. Our experimental results demonstrate that
the proposed configuration is capable of performing rea-
sonably accurate depth estimation for a system moving
at a rate of 1 ms−1 when in good lighting conditions.

1 Introduction

The goal of this work is to investigate the potential
of using a Raspberry Pi 2 as a depth meter with respect
to a slow moving system. This work is the first step
of a long-term plan to investigate the usage of a Rasp-
berry Pi or similar devices as an embedded collision
avoidance system for unmanned aerial vehicles.

UAV technology is proving to be enormously use-
ful, making significant contributions to environmental
science [9], agriculture [20], search and rescue [2], and
surveillance [16], to name a few. The addition of em-
bedded systems to UAVs leads to automation of these
craft’s capabilities, thus reducing the dependency on
human controllers, and therefore potentially increas-
ing the scope of uses for these devices.

The Raspberry Pi is especially suited to usage with
a UAV due to its light weight and low power require-
ments. It is also relatively cheap and widely available.
The availability of cheap, light-weight cameras make
the Raspberry Pi suitable for computer vision systems.

While some previous work has found the Raspberry
Pi to be insufficient for UAV-based stereo [6][14], it
should be noted that these works were completed prior
to the availability of the Raspberry Pi 2. In this work,
we assert that the faster processor and light-weight of
the Raspberry Pi 2 make it an ideal candidate for our
applications. The more-powerful Raspberry Pi 3 has
subsequently been released, but at the time of the ini-
tial experiments for this paper, the Raspberry Pi 2 was
the latest available. As such, it is exclusively consid-
ered here, though future work will likely use a Rasp-
berry Pi 3.

One critical limitation of the Raspberry Pi 2 for
stereo image processing is that it only has one CSI
port for high speed data flow from a camera system.
We found however that this could be overcome by the
addition of an IVPort multiplexer [8].

2 Literature Review

The various Raspberry Pi (RPi) models have been
used repeatedly for vision research, where a low-profile
on-board processor has been needed. Dziri et al. [3]
and Tu [18] et al. used cameras with RPis to track hu-
mans and honeybees, respectively. Neves and Matos
[12], and Valsan and Patil [19] used dual USB cam-
eras and OpenCV to create depth estimation systems.
Da Silva [1] et al. captured images with a UAV and
processed them on an RPi, simulating live capture and
processing, but did not put the RPi in the field. Pereira
and Pereira [14] tested mounting a RPi onto a UAV
in the hopes of performing near-real-time image pro-
cessing, but concluded that the RPi did not have the
processing capabilities required for their application.
They used an older version of the Raspberry Pi though.

The first version of the IVPort multiplexer was in-
vestigated by Pikkarainen [15]. In their work, they
reported that a 400 ms delay between image captures
was necessary. They recommended the use of two syn-
chronised RPis for stereo image capture, which is a
significant limitation for UAV usage due to weight and
mounting considerations.

To the best of our knowledge, only [15] has pre-
viously investigated the use of a multiplexer with a
Raspberry Pi, and no one has previously investigated
the combination for use with a moving set-up.

3 Methodology

Figure 1: The Raspberry Pi with IVPort mounted, and
camera modules attached

The equipment used in this work (Fig. 1) was (i) A
Raspberry Pi Model 2, running the Raspbian OS; (ii)
An IVMech IVPort multiplexer, revision three; (iii)
Two Raspberry Pi camera modules, version one.

Table 1: Raspberry Pi Camera Setup Specifications

Resolution 5 Megapixels
Video Modes 1080p30, 720p60, 640x480p90
Pixel Size 1.4 µm x 1.4 µm
Focal Length 3.60 mm ± 0.01
Base Line 41.00 mm

15th IAPR International Conference on Machine Vision Applications (MVA)
Nagoya University, Nagoya, Japan, May 8-12, 2017.

© 2017 MVA Organization

09-11

248



3.1 The Multiplexer Solution

The Raspberry Pi has a dedicated port for high-
speed camera access, the camera serial interface (CSI)
port. As there is only one of these installed on the
Raspberry Pi 2, it is problematic for stereo image pro-
cessing. One way to get around this is to use USB
webcams [12][19], however this has worse performance
that the CSI port [5]. Also, this solution means that
the cameras occupy two of the Raspberry Pi’s USB
ports, which may be desired for other peripherals.

Thus the solution followed in this work is to attach a
camera multiplexer, which connects to the Raspberry
Pi via its general purpose input-output (GPIO) pins.
The multiplexer then operates between the cameras
and the Raspberry Pi’s CSI port, switching camera
feeds based on signals passed via the GPIO pins. The
multiplexer we use in our experimental work is the IV-
Port multiplexer [8].

3.2 Stereo Matching Pipeline

Figure 2: Stereo Matching Pipeline

The goal of the stereo matching pipeline is to deter-
mine a depth map. The proposed steps of this pipeline
are as follows:

1. Calibration: Calibration is performed to de-
termine the intrinsic parameters of each camera
in the system, as well as the relative positions
and orientations of those cameras relative to each
other. In this work we used Tsai calibration [17].

2. Rectification (and Distortion Removal):
The calibration parameters allow for the determi-
nation of image transforms that remove distortion
and remap the images to canonical epipolar ge-
ometry (e.g. Fig. 4). The rectification algorithm
used here was derived from [4].

3. Stereo Matching: Once a stereo pair has been
rectified, the disparity map may be derived using
a stereo matching algorithm (see Fig. 4 bottom).
In this work, we use the Block Matching [10] al-
gorithm from OpenCV [13] to achieve this.

4. Depth Extraction: A disparity map is easily
converted into a depth map using the relation Z =
(f×baseline)/disparity, where Z is the depth and
f is the camera’s focal length.

The stereo matching pipeline was implemented on
the RPi using Python and OpenCV [13]. While some
investigation was done towards the usage of high speed,
low memory algorithms tailored for embedded systems
(such as [7]), it was found that this was ultimately
not necessary, as it was found that in most cases the
OpenCV implementation was fast enough relative to
the acquisition rates of the system.

4 Experiments and Results

Three different experiments were performed on the
system to assess its performance. Depth map acquisi-
tion is implemented using a typical calibration stereo
pipeline [11]. Calibration is performed using Tsai cal-
ibration [17]. In the first experiment, the goal was to
assess the raw capturing rates associated with a sin-
gle camera attached to the Raspberry Pi rig. In the
second experiment, the goal was to establish the ex-
pected rate of acquisition when capturing stereo pairs
using the proposed multiplexer solution. The final ex-
periment verified the full pipeline with respect to depth
acquisition and motion of the rig.

4.1 Single Camera Capture Rate Assessment

The rationale behind initially assessing the perfor-
mance of only a single camera was to establish an ex-
pected upper-bound on the reliable performance of the
system. This upper-bound was used to assess the plau-
sibility of subsequent results.

Experiments were performed by executing continu-
ous image capture sessions for 5 second intervals, sav-
ing the captured images to disk. A frame rate for each
experiment was determined by counting the number of
images captured during the session and dividing the
amount by the 5 second interval.

The main result of this experiment was that the
fastest frame rate was achieved for a resolution of
640×480 pixels, which was 63.2 frames per second
(fps). The main surprise that came from this set of ex-
periments, was the discovery of cases where higher res-
olution images achieved better frame rates than lower
resolution images (1025×768 7→ 32.2 fps and 1280×960
7→ 38.6 fps for example). Further investigation re-
vealed the cause to be that the Raspberry Pi captures
images in a limited set of predefined resolutions, and
then maps to new resolutions by scaling the captured
images. Frame rates associated with one of the prede-
fined settings tended to be higher than those associated
with other resolutions.

4.2 Stereo Camera Capture-rate Assessment

The goal of this set of experiments was to determine
the fastest strategy for capturing frames on the pro-
posed system. Experiments were conducted by execut-
ing continuous capture sessions for 5 second intervals.
Here, we restricted the resolution to 640×480 pixels.
The strategies tested were:

1. Sequence Capture with Toggle Thread
(SCTT): This strategy makes use of a capture
thread and a toggle thread. The capture thread
continuously captures from the active camera and
saves to disk, while the toggle thread switches the
active camera after a predefined interval. Switch-
ing between the capture and toggle mode allowed
to test various toggle interval. It was found that
toggle rates below 100 ms resulted in corrupt im-
ages (see Fig. 3).

2. Synchronized Capture and Switch (SCS): In
this strategy an image is captured from the first
camera and saved to disk and then from the sec-
ond camera and saved to disk and so forth. The

249



switching call is made immediately after an im-
age is captured, to give the longest time possible
between a switch and the next image capture.

3. Capture to Memory Stream and Switch
(CMSS): This strategy is similar to the SCS
strategy, however images are captured and saved
to memory instead of disk. A separate thread
slowly unpacks the memory and writes the images
to disk.

(a) 10 µs (b) 10 ms

Figure 3: Corrupted images captured with too high
toggle rates using the SCTT strategy, with different
periods between switch calls.

It was found that the SCTT, SCS and CMSS strate-
gies respectively required 200 ms, 271 ms and 193 ms
to perform a capture of two images for a ’stereo pair’,
resulting in respective framerates of 5.0, 3.7 and 5.2
frames per second.

The minimum switching time necessary to ensure
that the vast majority of images captured are uncor-
rupted was found to be approximately 100 ms. This
places an upper bound of around five stereo images
per second (10 per second, five for the left, five for the
right). The synchronized nature of the switching em-
ployed in the SCS and CMSS strategies ensured that
the switching time occurred at the best point possible,
when there would be the longest time until a new im-
age was captured, significantly reducing the incidence
of corrupted image captures.

Considering that the CMSS strategy yielded a fram-
erate at the rough maximum imposed by the multi-
plexer, and avoided issues of images becoming severely
corrupted, such as with Figure 3, the CMSS strategy
was employed in the later experiments.

4.3 Full pipeline evaluation

In order to evaluate our full system, we conducted
a set of experiments to assess the behavior of our sys-
tem with respect to depth acquisition with the rig in
motion. Time and space constraints prevented us from
performing further experiments for this paper.

Our experimental setup included a backboard to-
wards which the Raspberry Pi rig moved at an ap-
proximate rate of 1 ms−1. This speed was assessed
via a pedometer and a human operator walking slowly.
Incremental markers were placed so that the distance
between the camera and the backboard were known
at 10 millimeter intervals. Depth measurements for
the backboard were acquired manually from the depth
map. A final measurement was acquired by performing
a plane fitting on the depth values and acquiring the
depth value at the central position of this plane.

The experiment was repeated a second time, how-
ever this time the cameras were kept static at each in-
terval. For comparison, a static GoPro stereo rig was
also used. The purpose of this experiment was to assess
the effect of motion on the system. The experimental
results are shown in Table 2.

Table 2: Actual Distance vs System Distance (mm)
acquired from RPi rig moving at 1 meter per second
and a static system, in good lighting conditions.

Actual Moving Static
500 631 504
1500 1621 1506
2000 2109 2027
2500 2635 2510
3000 3100 3012
3500 3635 3514
4000 4055 4055
4500 4583 4583

For comparison, results were also gathered with the
cameras looking outdoors. In order to be able to accu-
rately measure distances for the ground truth, this was
performed indoors, but with the backboard against a
window looking onto a busy street. Lighting conditions
were unfavourable, with only moderate lighting inside,
but significant glare behind the backboard (see Figure
4). Results were collected with both the RPi and a
stereo pair of GoPro cameras for comparative results
with a commonly used set-up, and are presented in
Table 3. Precise round actual distances were difficult
to achieve in the experimental location, so the actual
depths measured with a laser depth-meter are shown.
Due to the poor lighting conditions, the backboard was
too dark in the image for features to be detected at
4500 mm in the static scenario, so results are not in-
cluded.

Table 3: Groundtruth distance vs system distance (in
mm). Acquired from our RPi rig moving at 1m.s−1

and from a static system, in suboptimal lighting con-
ditions.

Static Moving
GT RPi GoPro GT RPi GoPro
1009 892 929 1018 1038 778
1502 1532 1367 1503 1559 1711
2002 2077 1865 2014 2077 2164
2494 2532 2160 2492 1933 2675
3008 2971 2880 2988 2373 2901
3494 3998 3248 3496 3693 3043
4025 4090 3881 3995 3127 3647

- - - 4498 4090 4128

5 Conclusions

In this work, we describe the construction of a Rasp-
berry Pi 2 system that is capable of acting as a depth
measurement system for slow forward moving systems.
We investigated the notion of attaching two cameras to
a single CSI port with the addition of an IVPort multi-
plexer with respect to a Raspberry Pi 2 system in mo-
tion. It was found that a simple OpenCV based stereo

250



Figure 4: The RPi processing pipeline. From top to
bottom: Indoor and outdoor rectified stereo pairs; cor-
responding disparity maps

matching pipeline was adequate to acquire the respec-
tive depth maps when its performance was assessed
relative to the memory requirements of the Raspberry
Pi and its speed with respect to the acquisition rates
of the images from the camera system. A resolution
of 640×480 pixels was found to yeld the fastest image
acquisition rate at an effective 63.2 frames per second
from a single camera. It was also found that the fastest
rate that we could acquire stereo pairs was 5.2 stereo
frames per second. Any attempt to use the multiplexer
to switch between cameras at a faster rate resulted in
interlacing and colour artifacts within images. It was
found that motion mostly affected our system perfor-
mance at distances smaller than 4 meters from the tar-
get object. Greater distances however, had roughly
equivalent depth measurements. It is suspected that
the reason for this is that the error due to motion had
less effect at greater distances due to the lower depth
resolution per disparity level at this distance.

When in less-than-ideal lighting conditions, results
varied. At close distances, the RPi system produced
more accurate results than a stereo pair of GoPro cam-
eras, but became less accurate at greater distances, es-
pecially when in motion. The results suggest that the
RPi with a multiplexer may be an acceptable substi-
tute for a GoPro pair at low speeds, while being much
more practical for mounting on a lightweight vehicle.

In future work, we aim to attach our system to an
actual UAV and perform field testing of the system.

References

[1] J. F. da Silva, A. V. Brito, J. A. da Lima, and H. N.
da Moura. An embedded system for aerial image pro-
cessing from unmanned aerial vehicles. In 2015 Brazil-
ian Symposium on Computing Systems Engineering
(SBESC), pages 154–157, 2015.

[2] P. Doherty and P. Rudol. A uav search and rescue
scenario with human body detection and geolocaliza-
tion. In Australasian Joint Conference on Artificial

Intelligence, pages 1–13. Springer, 2007.
[3] A. Dziri, M. Duranton, and R. Chapuis. Real-time

multiple objects tracking on Raspberry-Pi-based smart
embedded camera. Journal of Electronic Imaging, 25(4):
041005, 2016.

[4] A. Fusiello, E. Trucco, and A. Verri. A compact algo-
rithm for rectification of stereo pairs. Machine Vision
and Applications, 12(1):16–22, 2000.

[5] B. Horan. Hardware Overview, pages 1–16. Practical
Raspberry Pi. Apress, Berkeley, CA, 2013.

[6] D. Hulens, T. Goedem, and J. Verbeke. How to choose
the best embedded processing platform for on- board
uav image processing? In Proceedings 10th interna-
tional conference on computer vision theory and ap-
plications, pages 1–10, 11-14 March 2015.

[7] M. Humenberger, C. Zinner, M. Weber, W. Kubinger,
and M. Vincze. A fast stereo matching algorithm
suitable for embedded real-time systems. Computer
Vision and Image Understanding, 114(11):1180–1202,
2010.

[8] IVMech. Raspberry pi camera module multiplexer.
https://github.com/ivmech/ivport, 2016. [Online;
accessed 25-September-2016].

[9] A. Jaakkola, J. Hyyppä, A. Kukko, X. Yu, H. Kaarti-
nen, M. Lehtomäki, and Y. Lin. A low-cost multi-
sensoral mobile mapping system and its feasibility for
tree measurements. ISPRS journal of Photogramme-
try and Remote Sensing, 65(6):514–522, 2010.

[10] K. Konolige. Small vision systems: Hardware and im-
plementation. In Robotics Research, pages 203–212.
Springer, 1998.

[11] W. Li, T. Gee, H. Friedrich, and P. Delmas. A prac-
tical comparison between zhang’s and tsai’s calibra-
tion approaches. In Proceedings of the 29th Inter-
national Conference on Image and Vision Computing
New Zealand, pages 166–171. ACM, 2014.

[12] R. Neves and A. C. Matos. Raspberry PI based stereo
vision for small size ASVs. In 2013 OCEANS - San
Diego, pages 1–6, 2013.

[13] L. OpenCV. Computer vision with the opencv library.
GaryBradski & Adrian Kaebler-OReilly, 2008.

[14] F. C. Pereira and C. E. Pereira. Embedded image
processing systems for automatic recognition of cracks
using uavs. IFAC-PapersOnLine, 48(10):16, 2015.

[15] M.-P. Pikkarainen. Raspberry pi-pohjainen rgb-& ir-
kuvantamis-ja mittausjrjestelm, 2015.

[16] E. Semsch, M. Jakob, D. Pavlicek, and M. Pechoucek.
Autonomous uav surveillance in complex urban envi-
ronments. In Web Intelligence and Intelligent Agent
Technologies, 2009. WI-IAT’09. IEEE International
Joint Conferences on, volume 2, pages 82–85, 2009.

[17] R. Tsai. A versatile camera calibration technique for
high-accuracy 3d machine vision metrology using off-
the-shelf tv cameras and lenses. IEEE Journal on
Robotics and Automation, 3(4):323–344, 1987.

[18] G. J. Tu, M. K. Hansen, P. Kryger, and P. Ahrendt.
Automatic behaviour analysis system for honeybees
using computer vision. Computers and Electronics in
Agriculture, 122:10–18, 3 2016.

[19] V. N. Valsan and C. Y. Patil. A system on chip based
stereo vision approach for disparity measurement. In
Industrial Instrumentation and Control (ICIC), 2015
International Conference on, pages 1284–1287, 2015.

[20] C. Zhang and J. M. Kovacs. The application of small
unmanned aerial systems for precision agriculture: a
review. Precision agriculture, 13(6):693–712, 2012.

251


