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Abstract 
 

The goal of Non-Rigid Structure from Motion (NRSfM) 
is to recover 3D shapes of a deformable object from a 
monocular video sequence. Procrustean Normal 
Distribution (PND) is one of the best algorithms for 
NRSfM. It uses Generalized Procrustes Analysis (GPA) 
model to accomplish this task. But the biggest problem of 
this method is that just a few non-rigid points in 2D 
observations can largely affect the reconstruction 
performance. We believe that PND can achieve better 
reconstruction performance by eliminating the affection of 
these points. In this paper, we present a novel 
reconstruction method to solve this problem. We present 
two solutions to simply classify the points into non-rigid 
and nearly rigid points. After that, we use EM algorithm 
of PND to recover 3D structure again for nearly rigid 
points. Experimental results show that the proposed 
method outperforms the existing state-of-the-art 
algorithms. 
 
1. Introduction 
 

Structure from motion (SfM) is the process to estimate 
3D structures and corresponding camera motions of a rigid 
object from 2D point tracks. Although its theory has been 
well established over the past two decades [8], recovering 
time varying 3D shapes of a deformable object is still 
difficult. This task is called Non-Rigid Structure from 
Motion (NRSfM). The difficulty is mainly due to the 
inherently high number of degrees of freedom. For every 
time varying observed 2D point, there exactly exists one 
corresponding 3D point, which makes the problem to be ill 
posed.  

Recent research works have been attempted to solve 
NRSfM by using additional constraints. For instance, 
some approaches assumed the time varying 3D structure of 
non-r igid objec t  can be represented as a l inear 
combination of several bases of shapes [1, 9, 10]. 
However, because the shape basis is highly object-specific, 
it is difficult to apply it in practical problems. Other 
approaches represented a 3D point trajectory by using a 
set of pre-defined trajectory bases [3, 4, 5, 11]. The 
advantage of this representation is that it is object free and 
the trajectory basis can be pre-defined, thus achieving a  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Basic idea of our classification methods for nearly 
rigid and non-rigid points. (a) (b)    , are T frames input 
images; (c) 2D trajectory of nearly rigid and non-rigid 
point; (d) Aligned 3D shape and its mean shape. 

 
significant reduction in number of unknowns. Besides, Dai 
et al. proposed a well-known algorithm based on the 
nuclear minimization method that called Block Matrix 
Method  (BMM) [2]. BMM achieved one of the most 
remarkable reconstruction performances. The similar 
approaches based on the nuclear minimization were used 
to reconstruct 3D structures from realistic videos [6, 12]. 
The advantage of these methods is that it doesn’t need any 
priors such as pre-defined shape basis or trajectory basis. 

However, as long as the authors know, all of these 
existing methods are based on the low rank assumption. 
The rank needs to be set correctly and it is still difficult to 
know the proper number. Recently, Lee et al. proposed a 
novel algorithm called Procrustean Normal Distribution 
(PND) [7] that outperforms the existing methods and does 
not require any rank constraint. It determines rigid motions 
based on the Generalized Procrustes Analysis (GPA) [13], 
which improves the accuracy of rotation calculation for 
NRSfM, but there exists one big problem in PND that only 
a few points with strong deformation can cause poor 
reconstruction performance.  
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In this paper, we present a novel NRSfM method to 
solve this problem. Here, we define the points with strong 
deformation as “non-rigid points”. On the other hand, the 
other points are called “nearly rigid points” in this paper. 
The proposed method is based on PND. The basic idea is 
that: we classify all points of the object into non-rigid and 
nearly rigid points, Fig. 1 (c) and (d) show our two 
approaches to separate these two types of points correctly. 
They compare the time varying 2D displacement (Fig.1 (c)) 
and 3D distance between aligned shape and PND’s 
recovered mean shape (Fig.1 (d)). And after that, we use 
EM algorithm again to achieve more accurate 
reconstruction result for the nearly rigid points.  
   The remainder of this paper is organized as follows:  
Section 2 briefly reviews PND algorithm and introduces 
our approach to solve the problem of PND. Experiments 
results and conclusions are presented in section 3 and 
section 4, respectively. 
 
2. Non-Rigid Structure from Motion 

 
2.1    Procrustean Normal Distribution  
 

PND [7] is a special normal distribution of shape 
deformation that constrains the non-rigid motions, so that 
3D shapes are aligned as closely as possible in its 
distribution. It determines rigid motions by using modified 
GPA constraints to minimize non-rigid variation, which 
improve the accuracy of rotations in NRSfM. GPA can be 
used to superimpose the multiple landmark shapes to a 
common reference using rigid transformations. The GPA 
problem is defined as:  
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3D shape, scale, rotation, and translation, respectively, for 
the i-th input frame. T is the total number of frames and n 
is the number of points. FA denotes the Frobenius norm 
of matrix A, i.e 2 2T

F 2A =tr(A A)= vec  with a vectorization 
operator vec( ) . Also X  is the mean shape, represented 
as: 
 

1X= s R XT i i i                                (2) 
 

where T is the number of frames. PND introduces an 
additional constraint that the norm of the mean shape is 
one, i.e.  2

FX = 1. This constraint can also be rewritten as:   
 

         Tvec(s R X ) vec(X) =s tr(R X X) =1i i i i i i             (3)       
 

The modified GPA constraints can be represented as: 

 (a)                   (b)                 (c) 
Fig. 2. Reconstructed 3D shape (blue circle) of Pickup 
against ground truth (black dots). a) Result of PND; b) 
Classification of nearly rigid points (circle) and non-rigid 
points (plus); c) Result of proposed method. 
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where 3S  is a set of three dimensional positive semi-
definite matrices (PSDs), which is convex. The last two 
constraints in (4) are the convex constraints of aligned 
shapes. They define the distribution of PND as a special 
normal distribution. The next step is to use EM algorithm 
to calculate motion parameters and 3D shapes by 
maximizing the following log-likelihood function: 
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where Wi is the 2D observed points of i-th 3D shape.  

PND is the most accurate algorithm at present [7]. It 
outperforms other existing algorithms such as Dai’s 
method [2] which is known as state-of-the-art for NRSfM, 
the performance is inferior in several datasets. Since PND 
use the modified GPA to calculate rigid motions, a few 
non-rigid points of an object can cause inaccurate 
calculation. As seen in Fig. 2. (a), just two non-rigid points 
can cause poor reconstruction performance.  
 
2.2.     Proposed Reconstruction Method 
 

The basic idea of our reconstruction algorithm is: firstly, 
we use PND to recover 3D shapes as first estimation; then, 
we classify all points of the object into nearly rigid points 
and non-rigid points; after that, we use EM algorithm to 
reconstruct nearly rigid points again. The details of the 
proposed method are described in Algorithm1. 

We present two novel methods to classify two types of 
points. Since the deformation of non-rigid points is 
stronger than rigid points, we consider the time varying 
2D displacement of these points is also bigger than rigid 
points. Thus, our first method simply classifies the points 
just from the 2D observed points. Let ,xi j be the j-st 2D 
observed point in frame i, then the 2D displacement of j-st 
point in all frames can be calculated by: 

 
T
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We call the above method as Method1 in this paper. 
Owing to the fact that PND also calculates the rigid 

241



motion parameters (s, R, t) that are used to align 3D 
shapes to its mean shape, the other approach is to measure 
the Euclidean distance between 3D aligned shapes and 
mean shape. The distance of non-rigid point to its 
corresponding point in mean shape is greater than the 
distance of nearly rigid point to its corresponding point in 
mean shape. This method is also very easy to implement. 
si , R i , ti  are the scale, rotation, and translation, 
respectively, for the i-th input frame. ,Xi j  is the j-st 3D 
point recovered by PND in frame i. For the j-st point in 
each aligned shape, we calculate the sum of Euclidean 
distance to the corresponding point in mean shape by: 
 

   T 2
, F1

dis = s R X +t -X jj i i i j i
i                       (7) 

 
We call this method as Method2 in this paper. 

2D observations of T frames  n tracking points.
 recovered 3D shapes.

1. Use PND to recover 3D shapes as first estimation.
2.For every observed 2D point x calculate its 2D time
   varying displace

j

Algorithm1
Input
Output

： ，

：

，

ment dis  in all frames by equation 
   (6). Or for every recovered 3D point , calculate it's 3D 
   distance dis to the corresponding point in mean shape 
   by using equation (7).
3. Normalize dis to 0~1.

if(dis

j

j

j

j <σ)
   X is nearly rigid point.
4. Use EM algorithm of PND to reconstruct the nearly 

rigid points again.
5. Combine the new recovered 3D points with non-rigid
   points calculated in step 1 as final recovered 3D shape

j

s.
 
3. Experiments 
 
    In this section, we compared our proposed method 
against PND and Dai’s method (BMM) [2]. Since we 
proposed two approaches Method1 and Method2 to 
classify the nearly rigid points and non-rigid points, it’s 
necessary to evaluate the reconstruction performance for 
each method. We chose the most familiar datasets in this 
field which contains Shark (240/91), Walking (260/55) 
and Face (316/40) of [1]; Drink (1102/41), Pickup 
(357/41), Yoga (307/41), Stretch (370/41), Dance(264/75) 
of [4], where (T/n) denotes the number of frames (T) and 
points (n).The low rank parameter of BMM was set in 
accordance with their original paper. Following the 
parameter setting methodology in [2, 3, 4], we set the 
threshold parameter in Method1 and Method2 with 
different values from 0.2 to 1 (  0.2 0.25 0.3 1  ， ， ， ， )   
for different data and reported best result. The average 3D 
reconstruction error of T frames was measured using the 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. From first to last row: 3D shapes of Dance at frame 
1, 11, 30, 130, 141, 150 recovered by BMM, PND, 
proposed method Method1 and Method2 respectively. 
Recovered shapes are blue circles and ground truth is dark 
dots.  

 
same equation as PND: 

 
T

F F1
1error X -X0 / X0T i i i

i
               (8) 

 
where Xi and X0i is recovered 3D shape and ground truth  
respectively for the i-th input frame.  
 
Table 1. 3D reconstruction error of BMM, PND and our 
proposed method: Method1 and Method2. 
Method BMM PND Proposed method 

Method1 Method2 
Walking 0.0861 0.0465 0.0462 0.0435 Face 0.0223 0.0165 0.0170 0.0158 Yoga 0.0224 0.014 0.0130 0.0119 Stretch 0.0288 0.0156 0.0146 0.0146 Pickup 0.0356 0.0372 0.0164 0.0164 Drink 0.0216 0.0037 0.0036 0.0036 Dance 0.1451 0.1834 0.1438 0.1512 

Shark 0.5475 0.0134 0.0122 0.0135 
 
   We show the experimental result for 3D reconstruction 
errors. As shown in Table 1, the best reconstruction 
performance was achieved by the proposed method for all 
of these datasets. Method1 is better than PND except Face 
and Method2 is better than PND except Shark. Fig.3 
shows the front view of shapes of Dance at frame 1, 11, 30, 
130, 141, 150 recovered by different methods. It is seen 
that although PND was inferior to BMM, the performance 
was largely improved by our proposed method. Also, 
Fig.4 shows the side view of reconstruction results of 
Walking, Face, Yoga by PND and Method2. Our 
experiments showed that the proposed method can achieve 
more accurate  reconstruct ion performance than 
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Fig. 4. From first to second row: side views of 3D shapes 
recovered by PND, Method2, respectively.  
 
 

 Fig. 5. The 3D reconstruction error of Method1 and 
Method2 for Pickup with different value of threshold. 
 
PND.  Also, Fig.5 shows the 3D reconstruction error of 
Pickup with different thresholds for classifying non-rigid 
points.  Pickup is typical data that the quality of the 
reconstruction largely suffers in the presence of few non-
rigid points.  As is clear in Fig.5, the classification 
performance of Method 2 is more similar than Method1 
for different thresholds. 

Our method can improve the reconstruction quality for 
the data that suffers in the presence of few non-rigid points, 
such as Pickup. For data like this, we believe that both 
Method 1 and Method 2 can achieve good reconstruction 
performance. Also, we consider that Method 1 is better for 
data with strong deformation such as Dance, because PND 
would cause large 3D reconstruction error for strong 
deformation and it would be more difficult to classify the 
points in 3D space calculated by PND. 

We explain clearly that our method can’t be used to 
improve the reconstruction performance for any non-rigid 
objects. Also, its performance is guaranteed only when 
suitable threshold is given. However, there is still no 
automatic method to determine this threshold. 

 
4. Conclusion 

 
In this paper, we solved the problem of PND is that in 

some cases a few non-rigid points can largely affect the 
reconstruction performance. We demonstrated that nearly 
rigid point or non-rigid point can be simply classified by 
calculating its 2D displacement or 3D distance to the 

corresponding point in mean shape, thus the affection of 
non-rigid points can be easily eliminated. The proposed 
method achieved more accurate performance than BMM 
and PND. However, now we still don’t know the 
automatic selection way of the value of  for different 
data. It is left for our future work. 
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