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Abstract

Continuous action recognition plays an important
role for human behavior analysis. Most existing ap-
proaches require fully labelled action videos, which is
labour and time consuming to get. In this paper, we
propose a continuous action recognition approach for
weakly labelled videos data, where only the orders of
action labels are needed without its temporal locations.
We bulid a deep network combing convolutional neu-
ral network (CNN) and latent-dynamic dynamic con-
ditional random field (LDCRF) to learn action fea-
tures and recognize actions in a unified procedure. A
visual similarity extended connectionist temporal clas-
sification (CTC) layer is put on the top of the net-
work to evaluate all possible of temporal locations of
weakly labelled videos data. The whole network can
be trained end-to-end under weakly supervision. Ex-
perimental results on dataset HumanEva show our ap-
proach is promising and pratical.

1 Introduction

Human action recognition has been researched ex-
tensively for decades. Traditional isolated action
recognition [1, 2] is to classify the whole video to a
single action, where the videos are usually manually
pre-segmented. In contrast, continuous action recogni-
tion is a more realistic problem, where the videos con-
tain a sequence of actions and the boundary locations
between actions are unknown. Most existing works
[3, 4] use supervised learning methods. For continuous
actions, each frame of the video has to be annotat-
ed with an action label for training. However, with
increasing amount of videos data, fully labelling of ac-
tions in videos at large scale is highly labour and time
consuming. This greatly limits the application of these
methods. Instead, we can label only the order of oc-
curring actions without giving the temporal locations
of actions. This weakly supervised labelling way is at
low cost and more acceptable.

In this paper, we address the problem of contin-
uous action recognition with weakly labelled videos.
We aim at recognizing all of the actions and finding
out where they occurs, even without temporal super-
vision in training. This problem is challenging. As no
temporal locations are given during training, the num-
ber of possible alignments between action labels and
video frames is numerous, and searching through all
of these alignments is infeasible. Connectionist tem-
poral classification (CTC) [5, 6] was specially designed
for this problem where the alignment between the in-
puts and the target labels is unknown. It efficiently
evaluates all of the possible alignments using dynamic
programming. CTC was firstly applied for speech and
handwriting recognition. When it comes to continu-

ous action recognition in video, there is a much larger
space of possible alignments as the duration of an ac-
tion is much longer than that of a phoneme or a letter.
Overmuch alignments cause the performance of CTC
to deteriorate seriously. To solve this problem, Huang
et al. [7] extended CTC, which introduces visual simi-
larity, to decrease the possibilities of alignments. This
is achieved by encouraging the alignment to be consis-
tent with frame-to-frame visual similarities. We adopt
CTC to solve the weakly supervised learning problem
for continuous action recognition, and follow the same
idea of the visual similarity mechanism.

Other challenges also exist in continuous action
recognition. What kind of visual feature to represen-
t actions is hard to determine as human actions have
high variability of articulated motion, viewpoint and
possible occlusions in natural environment. Besides,
the modelling of continuous action is difficult. We have
to recognize and segment these actions simultaneously.
To these issues, we proposed a CNN and LDCRF mod-
el in our earlier work [8]. The CNN, one type of deep
models, is used to automatically learn effective and
robust action features from raw video data. The LD-
CRF, a probabilistic graphic model, can capture both
internal sub-structures and extrinsic dynamics between
actions. We integrate CNN and LDCRF seamless to a
deep network, which incorporates the feature learning
and action recognition in a unified framework. How-
ever, this hybrid CNN-LDCRF model is trained under
supervision. In this paper, we extend the hybrid CNN-
LDCRF model to be able to be trained under weakly
supervision.

We propose a weakly supervised learning framework
for continuous action recognition. Fig. 1 gives an
overview of the proposed framework. The action video
is segmented to small video clips. The CNN extracts
features of these video clips and the LDCRF model-
s the continuous action. At training phase, a CTC
layer is connected to the output layer of the CNN-
LDCRF. Visual similarity is embedded in CTC to pre-
vent the alignments that lead to paths visual incon-
sistent. The errors computed from the CTC layer are
back-propagated to LDCRF and CNN. Only giving in-
complete action labels, the entire model can be effi-
ciently trained in an end-to-end way.

2 Proposed Approach

In this section, we describe the key components of
the proposed approach, including the hybrid CNN-
LDCRF model and the visual similarity extended
CTC, and their combination.
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Figure 1. The framework of our model. It is
the combination of CNN, LDCRF, and CTC net-
work.

2.1 The Hybrid CNN-LDCRF Model

The action video is denoted by X = {x1,x2, ...,xT },
where xt are the raw pixels of video clip t. The video
clips contain more information than isolated frames for
CNN to exploit.

We design a 3D CNN to capture motion informa-
tion from the video clip. Two groups of convolutional
layers, pooling layers are stacked. The 3D kernel of
the convolutional layer connects local neighborhood in
spatial and continuous frames in temporal. We apply
this network on three channels, including gray, gradi-
ent and optical flow. The outputs of the three chan-
nels are combined together to a vector, and fed to two
fully connection layers. Local response normalized is
applied after the first fully connection layer. The out-
put of the second fully connection layer is the action
feature. This process from input to output contains
a series of linear and nonlinear transformations. We
denote the total transformation by Ψ(xi,Θ).

After passing through CNN, we obtain
the action features denoted by Ψ(X,Θ) =
{Ψ(x1,Θ),Ψ(x2,Θ), ...,Ψ(xT ,Θ)}. These features are
inputted to LDCRF. The LDCRF model predicts a
sequence of action labels Y = {y1, y2, ..., yT } by:

P (Y|X,Φ,Θ) = 1
Z(ψ(X,Θ),Φ) exp(

∑
t
VΦ(t, ht, ψ(X,

Θ)) +
∑
t
EΦ(t, ht−1, ht, ψ(X,Θ))) (1)

where Θ and Φ are the parameters of LDCRF and CNN
respectively. h = {h1, h2, ..., hT } represents the sub-
structure of the actions. Z(Ψ(X,Θ),Φ) is the partition
function. VΦ and EΦ are the sum of feature functions
on vertex t and edge (t− 1, t), which are defined as:

VΦ(t, ht,Ψ(X,Θ)) =
∑
k

λksk(t, ht,Ψ(X,Θ)) (2)

EΦ(t, ht−1, hj ,Ψ(X,Θ)) =
∑
k

µktk(t, ht−1, ht,Ψ(X,Θ))

(3)

where sk are state functions, and tk are transition func-
tions.
State function sk depends only on the action feature

of current node. Our state function is defined as:

shl(t, ht,Ψ(X,Θ)) = δ(h, ht)Ψ(xt,Θ)(l) (4)

where δ(h, ht) is the indicator function. Ψ(xt,Θ)(l) is
the l-th entry of action feature vector Ψ(xt,Θ) .
Transition function tk considers the relation between

hidden variable ht−1 and ht, which is defined as:

thh′ (j, hj−1, hj , ψ(X,Θ)) = δ(h, hj−1)δ(h
′
, hj) (5)

2.2 Visual Similarity extended CTC

The action labels of a sequence of video clips are
Y = {y1, y2, ..., yT } ∈ AT , where A be the set of al-
l possible action labels. Define a many-to-one map
B : AT 7→ A≤T , where B removes all repeated label-
s. Suppose l be the labelling containing the ordering
of actions without temporal localization of labels, the
conditional probability of is the sum of the probabili-
ties of all action labels paths corresponding to l:

p(l|X) =
∑

{Y|B(Y)=l}

p(Y|X) (6)

where p(Y|X) is the conditional probability of action
labels sequence Y. By considering visual similarity, we
have:

p(Y|X) =
T∏
t=1

zytt φ
t+1
t , φt+1

t =

{
max(θ, st+1

t ) yt = yt+1

θ yt ̸= yt+1

(7)
where the unary term zytt is the probability of emit-

ting action yt. The binary term φt+1
t is the correlation

between consecutive video clips. st+1
t is the visual sim-

ilarity between video clips. θ is the minimum similarity
threshold. This expression explicitly rewards the paths
where visually similar video clips have the same action
labels. This plays a key role in applying CTC in action
recognition task.
The calculation of (6) can be solved with a dy-

namic programming algorithm similar to the forward-
backward algorithm for HMMs [9]. The forward vari-
able α(t, s) is defined as the summed probability of all
t length paths that are mapped by B onto length s
prefix of l. It can be calculated recursively by:

α(t, s) =

{
ẑytt α(t− 1, s) s = 1

ẑytt α(t− 1, s− 1) + z̃ytt α(t− 1, s) s > 1
(8)

where,

ẑytt =
max(θ, stt−1)z

yt
t

max(θ, stt−1)z
yt
t + θ(1− zytt )

(9)

ẑytt =
max(θ, stt−1)z

yt
t

max(θ, stt−1)z
yt
t + θ(1− zytt )

(10)

The backward variable β(t, s) is defined as the
summed probabilities of all paths starting at t that
complete l. It can be calculated similarly as forward
variable. Then we have:

p(l|X) =

|l|∑
s=1

α(t, s)β(t, s)

zlst
(11)
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2.3 Combination of CNN-LDCRF and CTC

We put a CTC layer on the bottom of CNN-LDCRF.
LDCRF’s marginal probabilities of emitting an action
label are sent to CTC, that is:

zkt
∆
= P (yt = k|X,Φ,Θ) =

∑
Y:yt=k

P (Y|X,Φ,Θ) (12)

For training, our objective is to maximise the log
probabilities of all the correct labelling in the training
set S. This can be achieved by minimising the follow-
ing objective function:

L(S) = −
∑

(X,l)∈S

L(X, l) = −
∑

(X,l)∈S

ln p(l|X) (13)

For convenience, we take one sample loss L(X, l) for
illustration. The whole network can be trained using
gradient descent. The error of CTC layer is the gradi-
ent with respect to zkt :

δkt = −∂ ln p(l|X)

∂zkt
= −

∑
s:ls=k

α(t, s)β(t, s)

(zkt )
2
p(l|X)

(14)

These errors propagate to the LDCRF layer. We
compute the gradient respect to parameter Φ. For pa-
rameter λk associated with state function sk, the gra-
dient is computed as:

∂L(X, l)

∂λk
=

∑
t,t′ ,a

δkt P (ht′ = a|yt = k,Ψ(X,Θ)

,Φ)sk(t
′
, a,Ψ(X,Θ))−

∑
t,t′ ,Y

′
,a
δkt P (ht′ = a,Y

′
|

Ψ(X,Θ),Φ)sk(t
′
, a,Ψ(X,Θ)) +

λk
σ2

(15)

For parameter λk associated with transition function
tk, the gradient is computed as:

∂L(X, l)

∂µk
=

∑
t,t′ ,a,b

δkt P (ht′−1 = a, ht′ = b|yt = k

,Ψ(X,Θ),Φ)tk(t
′
, a, b,Ψ(X,Θ))−

∑
t,t′ ,Y

′
,a,b

δkt P (

ht′−1 = a, ht′ = b,Y
′
|Ψ(X,Θ),Φ)tk(t

′
, a, b,Ψ(X,Θ))

+
µk
σ2

(16)

The marginal probabilities in (15) and (16) can be
computed using belief propagation algorithm [10]. The
last terms of (15) and (16) are regularization terms.

The gradient respect to CNN’s parameter Θ can be
easily computed by back propagation algorithm of neu-
ral network [11]. Denote the node of CNN’s output as
ol, namely the l-th entry of action feature Ψ(X,Θ).
The error δl of node ol is:

δl =
∂G(Ω)
∂ol

=
∑
t,t′ ,a δ

k
t P (ht′ = a|yt = k,Ψ(X,Θ),Φ)

λal −
∑
t,t′ ,Y

′
,a δ

k
t P (ht′ = a,Y

′
|Ψ(X,Θ),Φ)λal (17)

The errors propagate backward to update the param-
eters of CNN.

After the parameters of the network are learnt, given
a new sequence of video clips, the action label having
maximum marginal probability output by LDCRF is
assigned to each clip. All frames in a video clip have
the same action label.

3 Experiments

In this section, we test our approach on a real human
motion dataset: HumanEva. It consists of multiple
persons performing a set of actions. Each video con-
tains one action with several repetitions. The videos
are captured by cameras of different viewpoints, there-
fore great variations of viewpoints exist. We choose
four actions: walking, box, jog and gesture, performed
by person S1, S2 and S3, captured by cameras C1, C2
and C3. We concatenate these four actions of each per-
son under the same camera in an arbitrary order, total-
ly generating 18 videos. We use 15 videos for training,
and 3 videos for testing. The length of each video is
about 1250 frames. The metric of recognition accura-
cy is used to evaluate our approach, which is defined
as the ratio between the number of correct classified
frames over the total number of frames.

3.1 Implementation Details

We use a detector to locate persons and track them.
The person images are cropped and resized to size
90×50. The length of video clip is 5. For CNN, we
use 16 and 8 3D kernels for the first and second covo-
lutional layers, respectively. The node numbers of the
two fully connection layer are 100 and 50, respectively.
The hidden states of LDCRF for each action is 3. The
batch size of gradient descent is set to be 1, that is
the gradient descent is performed on one action video
at each iteration. The gradient descent stops until the
model converges.
To measure visual similarity, k-means clustering is

applied to cluster video clips that have similar visual
features and are temporally adjacent. If the video clip
t and t + 1 are in the same cluster, we set st+1

t to
∞, else, st+1

t is the cosine similarity of them. We use
HOG3D descriptor [12] to extract visual feature for
each video clip, and build a 100 words dictionary for
k-means clustering.
Our model is named CNN-LDCRF-ECTC for short.

We also test two other models on this dataset. 1)
CNN-ECTC model: the CNN is directly connected to
the extended CTC without LDCRF model. 2) CNN-
LDCRF-CTC model: original CTC is used without
adding visual similarity. Besides, we train the hybrid
CNN-LDCRF model under supervision and show its
result for comparision.

3.2 Results and Analysis

The segmentation and recognition results are pre-
sented by color bars in Fig. 2. Colors indicate action
classes, and the horizontal axis is time in frames. Not-
ed that the result of CNN-LDCRF-CTC model is not
shown. This is because that this model does not con-
verge at training, and fails to recognize actions. This
proves our previous analysis that original CTC’s per-
formance deteriorates seriously when the length of se-
quence is very long. The predicted action labels of
CNN-CTC model are fractional. This is because of
the lack of dynamic constraint without the LDCRF.
Our CNN-LDCRF-ECTCmodel achives relatively bet-
ter result. Even without temporal locations of labels
for training, many segmentation locations between ac-
tions are accurately predicted by our model. While the
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Ground truth

CNN-LDCRF-ECTC

CNN-CTC

CNN-LDCRF

Ground truth

CNN-LDCRF-ECTC

CNN-CTC

CNN-LDCRF

Ground truth

CNN-LDCRF-ECTC

CNN-CTC

CNN-LDCRF

(1)

(2)

(3)

Figure 2. Comparison of different models on three
test videos. Videos (1), (2) and (3) have 1300,
1300 and 1305 frames, respectively. Colors in-
dicates different actions. Blue: jog, red: box;
green: gesture, yellow: walking.

Table 1. Comparision of recognition accuracies.

Model Recognition accuracy
CNN-LDCRF-ECTC 84.12%

CNN-CTC 74.39%
CNN-LDCRF-CNN 93.21%

recognition results of action box in video (1) and (3)
are bad. Our model confuses action jog and walking
sometimes. The same problem also happens to hybrid
CNN-LDCRF model.

The recognition accuracy results are shown in Ta-
ble. 1. Our model achieves the recognition accuray of
84.12%, which is 9.09% lower than the fully supervised
hybrid CNN-LDCRF model.

4 Conclusion

In this paper, we propose an approach for continu-
ous action recognition when action videos are weakly
labelled. We introduce our hybrid CNN-LDCRF mod-
el for continuous action recognition. The hybrid CNN-
LDCRF model is combined with visual similarity ex-
tented CTC, making it to be able trained under weakly
supervision, where only the orders of actions are given
even without the accurate temporal locations. Exper-
iment results demonstrate the practicability and accu-
racy of our model. As future work, we should consider
the situation where a part of videos is weakly labelled
and the other part is fully labelled. We should simul-
taneously trained our model in a unified framework for
weakly and fully labeled videos.
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