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1 Introduction

A computer has a complete photographical memory. It
creates massive but isolated sensory moments. Unlike such
fragmented photographic memory, human memories are
highly connected through episodes that allow us to relate
past experiences and predict future actions. How to com-
putationally model a human-like episodic memory system
that connects photographically accurate sensory moments?
Our insight is that an active interaction is a key to link be-
tween episodes because sensory moments are fundamen-
tally centered on an active person-self. Our experiences are
created by and shared through our social and physical in-
teractions, i.e., we connect episodes driven by similar ac-
tions and, in turn, recall these past connected episodes to
take a future actions. Therefore, connecting the dotted mo-
ments to create an episodic memory requires understanding
the purposeful interaction between human (person-self) and
world.

Photographs are only half of our world experience: it
records what are out there. What are in our head, our
intention-attention-physiological states during the social
and physical interactions, are missing from the memory
recording. This needs creating an embodied memory link
between our inner ‘selves’ with the external episode, and
a first person camera is an ideal sensor to capture, model,
and predict the embodied memory link because it encodes
a complete visual audio sensation of the camera wearer’s
interaction with the world. We leverage purposeful ac-
tions measured by first person cameras to reveal the inter-
nal states of the camera wearer, and use the similar inter-
nal states to connect the wearer’s episodic sensations of the
world.

Here, we review several of our recent results on embod-
ied visual perception from first-person cameras.

2 Decoding Physical Sensation

A first-person video can generate powerful physical sen-
sations of action in an observer. Consider the problem of
Force from Motion [?]: decoding the sensation of 1) pas-
sive forces such as the gravity, 2) the physical scale of the
motion (speed) and space, and 3) active forces exerted by
the observer such as pedaling a bike or banking on a ski
turn (Fig. ??).

The sensation of gravity can be observed in a natural im-
age. We can learn this image cue for predicting a gravity
direction in a 2D image and integrate the prediction across
images to estimate the 3D gravity direction using structure
from motion. The sense of physical scale is revealed to us
when the body is in a dynamically balanced state. We com-
pute the unknown physical scale of 3D reconstructed cam-
era motion by leveraging the torque equilibrium at a banked
turn that relates the centripetal force, gravity, and the body
leaning angle.

Figure 1. Force from Motion—decoding the sensa-
tion of 1) passive forces such as the gravity, 2) the
physical scale of the motion (speed) and space, and 3)
active forces exerted by the observer. We model ego-
motion with rigid body dynamics integrated in a bun-
dle adjustment that allows us to recover the three sen-
sations (left) via the physical scale and gravity aware
reconstruction of the egomotion (right).

Future localization Occluded space discovery

Figure 2. Where am I supposed to be after 5, 10, and
15 seconds? We predict a set of plausible future tra-
jectories given a pair of egocentric stereo images. As
a byproduct of the predicted trajectories, the occluded
space by foreground objects such as the space inside
of the shop or behind the ladies are discovered.

The active force and torque governs 3D egomotion
through the physics of rigid body dynamics. Using an in-
verse dynamics optimization, we directly minimize 2D re-
projection error (in video) with respect to 3D world struc-
ture, active forces, and additional passive forces such as air
drag and friction force. We use structure from motion with
the physical scale and gravity direction as an initialization
of our bundle adjustment for force estimation. Our method
shows quantitatively equivalent reconstruction comparing
to IMU measurements in terms of gravity and scale recov-
ery and outperforms method based on 2D optical flow for an
active action recognition task. We apply our method to first
person videos of mountain biking, urban bike racing, ski-
ing, speedflying with parachute, and wingsuit flying where
inertial measurements are not accessible.

3 Future Localization

With first-person cameras, we also address the problem
of future localization [?]: to predict plausible future trajec-
tories of ego-motion in egocentric stereo images (Fig. ??).
Our paths avoid obstacles, move between objects, even turn
around a corner into space behind objects. As a byproduct
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Figure 3. Predicting a group trajectory of basket-
ball players from first person videos. The red is
the ground truth and blue is the predicted trajectories
with gaze direction.

of the predicted trajectories, we discover the empty space
occluded by foreground objects.

One key innovation is the creation of an EgoRetinal map,
akin to an illustrated tourist map, that ‘rearranges’ pixels
taking into accounts depth information, the ground plane,
and body motion direction, so that it allows motion plan-
ning and perception of objects on one image space. We
learn to plan trajectories directly on this EgoRetinal map
using first person experience of walking around in a va-
riety of scenes. In a testing phase, given an novel scene,
we find multiple hypotheses of future trajectories from the
learned experience. We refine them by minimizing a cost
function that describes compatibility between the obstacles
in the EgoRetinal map and trajectories. We quantitatively
evaluated our method to show predictive validity and ap-
ply to various real world daily activities including walking,
shopping, and social interactions.

4 Social Behavior Prediction

Not only individuals, but first-person videos from a num-
ber of people can also be collectively exploited. For in-
stance, we can predict future movements (location and gaze
direction) of basketball players as a whole from their first
person videos [?] (Fig. ??). The predicted behaviors reflect
an individual physical space that affords to take the next ac-
tions while conforming to social behaviors by engaging to
joint attention.

The key innovation is to use the 3D reconstruction of
multiple first person cameras to automatically annotate each
other’s the visual semantics of social configurations. We
leverage two learning signals uniquely embedded in first
person videos. Individually, a first person video records the
visual semantics of a spatial and social layout around a per-
son that allows associating with past similar situations.

Collectively, first person videos follow joint attention
that can link the individuals to a group. We learn the
egocentric visual semantics of group movements using a
Siamese neural network to retrieve future trajectories. We
consolidate the retrieved trajectories from all players by
maximizing a measure of social compatibility–the gaze
alignment towards joint attention predicted by their social
formation, where the dynamics of joint attention is learned
by a longterm recurrent convolutional network. This allows
us to characterize which social configuration is more plau-
sible and predict future group trajectories.

5 Unsupervised Learning of Important Ob-
jects

A first-person camera, placed at a person’s head, cap-
tures, which objects are important to the camera wearer.

Figure 4. Given an unlabeled set of first-person im-
ages, our goal is to find all objects that are important
to the camera wearer. Unlike most prior methods, we
do so without using ground truth importance labels.

Most prior methods for this task learn to detect such im-
portant objects from the manually labeled first-person data
in a supervised fashion. However, important objects are
strongly related to the camera wearer’s internal state such as
his intentions and attention, and thus, only the person wear-
ing the camera can provide the importance labels. Such a
constraint makes the annotation process costly and limited
in scalability.

Our recent work [?] makes it possible to detect important
objects in first-person images without the supervision by
the camera wearer or even third-person labelers (Fig. ??).
We formulate an important detection problem as an inter-
play between the 1) segmentation and 2) recognition agents.
The segmentation agent first proposes a possible important
object segmentation mask for each image, and then feeds
it to the recognition agent, which learns to predict an im-
portant object mask using visual semantics and spatial fea-
tures. We implement such an interplay between both agents
via an alternating cross-pathway supervision scheme in-
side our proposed Visual-Spatial Network (VSN). Our VSN
consists of spatial (?gwhere?h) and visual (?gwhat?h) path-
ways, one of which learns common visual semantics while
the other focuses on the spatial location cues. Our unsuper-
vised learning is accomplished via a cross-pathway supervi-
sion, where one pathway feeds its predictions to a segmen-
tation agent, which proposes a candidate important object
segmentation mask that is then used by the other pathway
as a supervisory signal. Our method achieves similar or
better results as the supervised methods.

6 Assessing Player’s Performance

We also devised a method to assess a basketball player’s
performance from his/her first-person video [?] (Fig. ??).
A key challenge lies in the fact that the evaluation met-
ric is highly subjective and specific to a particular evalu-
ator. We leverage the first-person camera to address this
challenge. The spatiotemporal visual semantics provided
by a first-person view allows us to reason about the cam-
era wearer’s actions while he/she is participating in an un-
scripted basketball game. Our method takes a player’s first-
person video and provides a player’s performance measure
that is specific to an evaluator’s preference. To achieve this
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Figure 5. Assessing Player’s Performance. Our goal
is to assess a basketball player’s performance based
on an evaluator’s criterion from an unscripted his/her
first-person basketball video. During training, we
learn such a model from the pairs of weakly labeled
first-person basketball videos. During testing, our
model predicts a performance measure customized
to a particular evaluator from a first-person basket-
ball video. Additionally, our model can also discover
basketball events that contribute positively and nega-
tively to a player’s performance.

goal, we first use a convolutional LSTM network to detect
atomic basketball events from first-person videos. Our net-
work’s ability to zoom-in to the salient regions addresses
the issue of a severe camera wearer’s head movement in
first-person videos. The detected atomic events are then
passed through the Gaussian mixtures to construct a highly
non-linear visual spatiotemporal basketball assessment fea-
ture. Finally, we use this feature to learn a basketball as-
sessment model from pairs of labeled first-person basket-
ball videos, for which a basketball expert indicates, which
of the two players is better. We demonstrate that despite

not knowing the basketball evaluator’s criterion, our model
learns to accurately assess the players in real-world games.
Furthermore, our model can also discover basketball events
that contribute positively and negatively to a player’s per-
formance.

7 Conclusion

We have presented our recent results on embodied visual
perception from first-person cameras. To computationally
model a human-like episodic memory system that connects
photographically accurate sensory moments, an active in-
teraction is a key to link between episodes because sensory
moments are fundamentally centered on an active person-
self. Connecting the dotted moments to create an episodic
memory requires understanding the purposeful interaction
between human (person-self) and world. We leverage pur-
poseful actions measured by first person cameras to reveal
the internal states of the camera wearer, and use the similar
internal states to connect the wearer’s episodic sensations
of the world.
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