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Abstract

The use of drones in infrastructure monitoring aims
at decreasing the human effort and in achieving consis-
tency. Accurate aerial image analysis is the key block
to achieve the same. Reliable detection and integrity
checking of power line conductors in a diverse back-
ground are the most challenging in drone based auto-
matic infrastructure monitoring. Most techniques in
literature use first principle approach that tries to rep-
resent the image as features of interest. This paper
proposes a machine learning approach for power line
detection. A new deep learning architecture is proposed
with very good results and is compared with GoogleNet
pre-trained model. The proposed architecture uses His-
togram of Gradient features as the input instead of
the image itself to ensure capture of accurate line fea-
tures. The system is tested on aerial image collected
using drone. A healthy F -score of 84.6% is obtained
using the proposed architecture as against 81% using
GoogleNet model.

1 Introduction

Infrastructure inspection is a tedious manual task
that is undertaken because of current industry necessi-
ties and to prolong life of infrastructure. The industrial
needs for insurance, maintenance and Quality of Ser-
vice (QoS) purposes ensures application of newer tech-
nologies in order to increase consistency and reduction
of manual labour. Specifically, if the assets are dis-
tributed in wide geographies and hard to reach places,
the need for industrial automation becomes key. In
such scenarios, emerging rotor based UAVs will play
critical role in gathering the much needed data from
wide perspectives. However, they come with many
challenges including navigation, data acquisition, pro-
cessing and decision making. For instance, monitoring
power lines is a very big challenge. They span across
hundreds and thousands of kilometers. This challenge
exponentially increases when there is a change in ge-
ography and terrain. Downtime is undesirable for a
power line grid. It is inherent that all pre-emptive
maintenance and repair needs to be done on these in-
frastructure before it actually fails. Inspection using
aerial imagery is the most feasible method for accom-
plishing the task. With vast improvements in hardware
and embedded systems aided by better understanding
of aerodynamics, unmanned aerial vehicles - particu-
larly rotor based drones (quadcopter, hex copter and
octocopters) are becoming increasingly common.

Processing huge amounts of aerial images or video
data accurately will create many unforeseen challenges.
Manual assessment and inspection of thousands of im-
ages will be cumbersome and prone to human error.
The aerial images captured using Drones will contain

not just the images of the power lines, but also captures
highly variable background like vegetation, roads, dif-
ferent texture of soil etc. This makes the aerial image
processing very challenging because of the background
heterogeneity. The region occupied by line in such
images will be very less compared to the background
thereby creating a highly biased datasets towards neg-
ative samples. With all this challenges posed, and ten
and thousands of images have to be analysed, it be-
comes inherent that we use an automated approach.
Traditional approaches either from first principals or
from shallow machine learning methods have been at-
tempted in the past with success [1] but adapting and
extending them to larger range of applications will have
its own system challenges.

In this work, the main aim is to develop a new algo-
rithm based on emerging deep learning that has shown
a lot of promise in object detection scenarios both in
terms of accuracy as well as in terms of reproducibility.
We first focus on the most important and challenging
class of power line conductor detection due to its bi-
ased nature of the dataset and the background that it
is likely to inherit at the recognition stage. The success
of Deep Learning can be attributed to the new greedy
layer-wise learning proposed in addition to rectified lin-
ear unit (ReLU) as activation function and the use of
GPUs that makes learning faster and efficient [2, 3].
There are many deep learning architectures proposed
recently in literature for image classification. In this
paper, the more classical approach of fine tuning the
existing models as well as a new architecture is pro-
posed and compared.

2 Related work

For power line monitoring, fewer groups are focused
and most of them use drones as a medium to cap-
ture the data. Sharma et al. [1] segments edges using
point pair as seeding point and grow the contour along
the linear feature boundary, which appears to be the
most sensible way. Ceron et al. [4] propose a circle
based search for detecting line segments using canny
and steerable filters. Ramesh et al. [5] use pixel in-
tensity based k-means clustering followed by morpho-
logical operations. All these methods are based on first
principles and use the characteristics of the power line
for detecting them. To the best of our knowledge, this
is the first work that attempts to use deep learning
for power line detection. This is particularly relevant
as machine learning gives flexibility of extending it to
multi object classification.

The performance of object classification task has
improved considerably in the last few years because
of Deep Convolution Neural Network (CNN) [3]. In
2012, Krizhevsky et al. [2] developed a new CNN ar-
chitecture for a 1000 class classification problem using
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data from ImageNet [6]. Later many architectures have
been proposed using this core idea. Google proposed
a deep inception network called GoogleNet [7] for im-
proved classification and detection performance. This
model is referred to as pre-trained model in this pa-
per that can be used in other applications as will be
explained below.

3 Deep Learning for aerial image analysis

In this paper, we propose a deep learning architec-
ture for power line detection from aerial images. We
use two approaches a) using a pre-trained model as
feature extractor; and b) develop our own architecture
that gives flexibility in terms of training time and real-
time operation.

3.1 Pre-trained models

In this approach, an existing pre-trained CNN model
is taken and the last few layers are retrained with new
set of object categories. Here, the existing model has
been trained for classifying a set of object categories.
Further, model has a set of values derived to make
a decision for distinguishing between existing trained
classes. That is, it has enough feature information to
distinguish between all the classes, therefore the same
information can be reused for the new set of object
categories. Re-training the whole network again for a
new set of data needs large data set and more time. By
doing so, the knowledge gathered from a larger more
generic problem can be transferred to the new domain.
The benefit is the reduction in training time as well as
the amount of data required for deriving correct repre-
sentation. Again the decision is based on the closeness
of the new data to existing data models. If it is en-
tirely different from the existing class and if we have
enough data set, then the whole network has to be
trained again. In case of power line identification, ex-
isting training data has images with ropes and strings
although an exclusive class is not available for rope
detection. This implies that the model already has in-
formation and the final layer retraining is required to
tap the information for the new classification.

Figure 1: Architecture for pre-trained models

GoogleNet, a 22 layer architecture, is used as pre-
trained model in this work. The way the pre-trained
model architecture is adapted in this work is shown in
Fig. 1. Fully connected layers are added at the end of
the GoogleNet model and retrained on power line data
set. The filter parameters of the other previous layers
are kept untouched and reloaded at training time. The
input to this architecture is the raw image pixels and
output is the binary classified output. In this archi-
tecture, GoogleNet pre-trained model act as a feature
extractor from the new class of images. Further, the

layer just before the final classification layer is having
an output of 2048 dimensional vector. It is the set of
values given by the pre-trained model for each input
image. These values are the input for newly added
fully connected layer with hidden units of 1024 neu-
rons. ReLU is used at the end of the layer as acti-
vation function. The final layer is a binary classifier
which classifies whether any power line is present in
the image or not. A softmax classifier is used at the
final layer for classification.

3.2 New deep architecture for power line detec-
tion

We propose a deep CNN architecture with fully con-
nected layers for power line detection. CNNs is known
for its architecture that infers spatial structure of the
image and it is widely adapted for image classification
tasks. The proposed architecture has four CNN lay-
ers and two fully connected layers followed by a Soft-
max classifier. The network is trained with the pop-
ular Histogram of Gradient (HoG) [8] features. The
architecture diagram of the network is shown in fig-
ure 2. Generally, CNN learns the representation itself
from raw image and extracts the feature based on the
optimization of loss function. It has been shown to
make the hand-crafted features obsolete. However, in
our application, power line is very sparse compared to
the complex background. Training with HoG feature
makes the classification task effective since the model
would be trained with the feature that we want to learn
for line detection. HoG is the histogram of the gradient
vector that represents edge orientation and is illumina-
tion invariant.

Figure 2: Architecture diagram of proposed deep net-
work

During training, input to the network is 8 × 8 size
HoG features with 9 channels. Generally, first layers
captures the low level orientation details from HoG
features. As the layer goes higher, it captures the high
level features that is the result of one or more features
at earlier stages. Network is trained for different gra-
dient orientations. The network configuration details
of the proposed network is given in the Table 1. The
input HoG features is passed through CNN and fully
connected layers for training. The first layer uses the
filter with receptive field of 5 × 5 and the depth of
16. It covers the small local region and captures the
gradients of all the orientation. The stride is fixed as
1 for all the layers. A ReLU is provided at the end
of all the convolutional layers as an activate function.
Max pooling is not used in this architecture since the
HoG image size is small compared to the original im-
age size 32×32. The second layer and third layer have
the filter with kernel size of 3 × 3 and the depth of 32
and 64 channels respectively. Further, it has a stack
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Table 1: Proposed network architecture

Layer Filter Channel Output size
CNN1 5x5 16 8x8x16
CNN2 3x3 32 8x8x32
CNN3 3x3 64 8x8x64
CNN4 1x1 96 8x8x96

of two 3×3 filter which adds two non-linear activation
function to the network. The addition of non-linearity
makes the decision function more discriminative. The
fourth CNN layer has the kernel size of 1 × 1 and the
depth of 96. It changes the dimensionality of the fea-
ture maps. A softmax classifier is provided at the final
layer for power line classification.

4 Experiments

An Ubuntu based workstation with configuration
Intel core i7 @3.4Gx8, 32GB RAM and NVIDIA
GM204GL [Quadro M4000] GPU card is used for train-
ing and testing purpose. Tensorflow, a deep learning
library with python support is used for implementing
deep learning network. Tensorflow [9] is an open source
machine learning library from Google, which supports
distribute computing among different GPUs.

Network is trained on the real data set collected by
drone. Drone with camera at the bottom is flown
over the high power transmission line for aerial im-
ages. The image contains the electric components like
insulator, tower and line; also the background of trees,
roads and building. The resolution of the image data
is 1280 × 960. The collected images are annotated us-
ing LabelMe [10]. The ground truth binary mask is
generated from annotated data and it is used for an-
notating the data set. For capturing the localization
information, the images are divided into patches of size
32× 32 and annotated with two classes ”Line present”
and ”No line present”. The labels are generated us-
ing first principles as explained in Sharma et al. [1].
The image patch approach ensures detection of power
line as well as in localising them. The input image
and ground truth image is shown in Fig. 3. It should
be noted that the labels are given only to the power
lines that have strong features and are closer to the
camera. The power lines away from the camera are
missed out and they are treated as noisy labels in our
deep learning architecture. The whole dataset contains
around 62400 image patches as both positive and neg-
ative samples together. The data set is partitioned
into training, validation and testing data in the ratio
of 7 : 1.5 : 1.5. The same dataset and set up was used
for both the training approaches.

Figure 3: Sample aerial images and its ground truth

As discussed earlier, two different approaches are

used for training. The first is to fine tune the pre-
trained model GoogleNet for the new data set. The
trained models are available in protocol buffer (.pb)
file format. During the building of computation graph,
all the saved parameters are restored to the graph ex-
cept the tensor node ‘softmax:0’, which is the classifier
node for pre-trained model. The training image size is
fixed to 32 × 32. The feature value of the each train-
ing image is extracted and stored at the tensor node
pool3 : 0, the layer just before the classification layer.
It is a 2048 dimensional vector, which is fed as input to
the newly added fully connected layer. These neurons
are then connected to the 1048 neurons in the next
layer. The softmax is used at the last layer for classi-
fication. During training, a mini-batch of 100 images
are used at each training step of 4000 iterations.

In the second approach, training image is divided
into image patches of size 32 × 32 similar to the
GoogleNet input. During HoG feature extraction,
32× 32 image is divided into 64 blocks and each block
is having a cell of 4 × 4 pixel size. Gradient vector
is computed for each cell and a histogram of 9 bins
of gradient orientation is generated. This results in a
feature vector of 576 (8 × 8 × 9) dimensional vector
for each patch. During training, the HoG feature from
all the training images are extracted and labeled with
corresponding classes. In this approach, a mini-batch
of 125 images are empirically chosen at each training
step of 1000 iteration.

5 Results and Discussion

A total of 52 images are used for training and re-
maining image for testing. Using GoogleNet model,
the patch size is fine tuned and the results are sum-
marised in Table 2. Although the results for 64 × 64
appears better, the resolution of results appears very
bad and is not suitable for further processing. Based
on the result, 32×32 is chosen for all our experiments.

Table 2: Results of GoogleNet model for different
patch sizes

Patch Size F-Score Accuracy Precision Recall
16× 16 48.3 86.02 33.98 83.24
32× 32 80.99 90.41 73.57 90.07
64× 64 83.5 89.66 75.23 94.04

A sliding non-overlaping window of size 32 × 32 is
moved over the image and each patch is evaluated
with the trained model. If any patch gets classified
as line, it is marked with a rectangle for line localiza-
tion. The two approaches are compared by measuring
the F -score, accuracy, precision and recall as given in
the Table 3.

Table 3: Results for both the approaches

Architecture F-Score Accuracy Precision Recall
HOG 84.6 92.9 83.0 86.3

GoogleNet 80.99 90.41 73.57 90.07

The time taken for training using the two approaches
is summarised in Table 4. In addition to the better
results obtained using the proposed architecture, the
training time is far better than the pre-trained model.

The segmentation result using GoogleNet classifier
is shown in Fig. 4a and the resulting line detection for
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Table 4: Training time for both the approaches

Architecture Patch Size Training Time

HOG 32x32 0.16 min

GoogleNet 32x32 55.65 min

all positive patches is shown in Fig. 4b. The line de-
tection that has been employed for final result is line
segment detector (LSD) algorithm [11] that is highly
optimised for this application. Similarly, the results
using the proposed architecture is shown in Fig. 5.

(a) Line localization (b) After LSD is applied

Figure 4: Results for GoogleNet pre-trained model

The overall results are in favour of building dedicated

(a) Line localization (b) After LSD is applied

Figure 5: Results for architecture with HoG features

architecture if enough data is available and if high ac-
curacies are anticipated. The pre-trained models work
reasonably well and is suitable for feasibility analysis.
The proposed architecture is not very deep and hence
gives us easy implementation on drones and other em-
bedded devices as well. In cases where the features of
interest is in a different scale compared to the scene
features extracted in case of pre-trained models, newer
dedicated architectures may be required. Future work
includes addressing affine transform and rotation that
may be caused by drone orientation.

6 Conclusion

The main aim of this work is to assess whether the
pre-trained models are suitable for all categories of ap-
plications as it enables transfer learning. The detec-
tion and localisation of the power conductor will en-
able business objectives such as line counting, detec-
tion of conductor snaps, sagging etc and it has been
used as an application to test our hypothesis. Two
approaches have been taken to detect the power line
- using GoogleNet pre-trained model and using a new
deep learning architecture. The proposed architecture
consists of 4 CNN layers followed by 2 fully connected

layer. Aerial images collected from drones are used
for training and testing. A F -score of 84.6% is ob-
tained using the proposed architecture against 81% ob-
tained using GoogleNet. The better results using the
proposed architecture indicates the need for the use
of customised models in certain class of applications
where the region of interest is very small compared to
its background.

References

[1] H. Sharma, T. Dutta, V. Adithya, and P. Balamu-
ralidhar, “A real-time framework for detection of long
linear infrastructural objects in aerial imagery,” in In-
ternational Conference Image Analysis and Recogni-
tion, pp. 71–81, Springer, 2015.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-
genet classification with deep convolutional neural net-
works,” in Advances in neural information processing
systems, pp. 1097–1105, 2012.

[3] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Pro-
ceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[4] A. Ceron, F. Prieto, et al., “Power line detection using
a circle based search with uav images,” in Unmanned
Aircraft Systems (ICUAS), 2014 International Con-
ference on, pp. 632–639, IEEE, 2014.

[5] K. Ramesh, A. S. Murthy, J. Senthilnath, and S. Omkar,
“Automatic detection of powerlines in uav remote sensed
images,” in Condition Assessment Techniques in Elec-
trical Systems (CATCON), 2015 International Con-
ference on, pp. 17–21, IEEE, 2015.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” in Computer Vision and Pattern Recogni-
tion, 2009. CVPR 2009. IEEE Conference on, pp. 248–
255, IEEE, 2009.

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich, “Going deeper with convolutions,” in Proceed-
ings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1–9, 2015.

[8] N. Dalal and B. Triggs, “Histograms of oriented gra-
dients for human detection,” in Computer Vision and
Pattern Recognition, 2005. CVPR 2005. IEEE Com-
puter Society Conference on, vol. 1, pp. 886–893, IEEE,
2005.

[9] “TensorFlow: Large-scale machine learning on hetero-
geneous systems.”

[10] B. C. Russell, A. Torralba, K. P. Murphy, and W. T.
Freeman, “Labelme: a database and web-based tool
for image annotation,” International journal of com-
puter vision, vol. 77, no. 1-3, pp. 157–173, 2008.

[11] R. G. von Gioi, J. Jakubowicz, J.-M. Morel, and G. Ran-
dall, “Lsd: a line segment detector,” Image Processing
On Line, vol. 2, pp. 35–55, 2012.

184


