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Abstract

We examine hierarchical approaches to image clas-
sification problems that include categories for which we
have no training examples. Building on prior work in
hierarchical classification that optimizes the trade-off
between depth in a tree and accuracy of placement, we
compare the performance of multiple formulations of
the problem on both previously seen (non-novel) and
previously unseen (novel) classes. We use a subset
of 150 object classes from the ImageNet ILSVRC2012
data set, for which we have 218 human-annotated
semantic attribute labels and for which we compute
deep convolutional features using the OVERFEAT net-
work. We quantitatively evaluate several approaches,
using input posteriors derived from distances to SVM
classifier boundaries as well as input posteriors based
on semantic attribute estimation. We find that the
relative performances of the methods differ in non-
novel and novel applications and achieve information
gains in novel applications through the incorporation
of attribute-based posteriors.

1 Introduction

Real world machine learning applications increas-
ingly address large and diverse data sets. While this
leads to an abundance of some classes of data, it also
uncovers objects that defy categorization in previously
seen classes. The task of classifying samples taken from
categories where no training examples exist is known
as zero-shot learning. This problem has interest both
from the practical standpoint of automatically labeling
novel items (thereby saving the time needed to retrain
classifiers) and from the scientific standpoint of under-
standing how humans perform the task [1].

In this study, we evaluate and combine two different
approaches to zero-shot learning: hierarchical classifi-
cation and mapping to semantic attributes. Hierarchi-
cal classification can be applied to previously unseen
classes by trading specificity for accuracy. The idea
is that while a novel object cannot be classified ex-
actly, correctly placing it in a more general category
can still provide useful information. For example, a
classifier that has not been trained on peaches may still
recognize a peach as a fruit. In contrast, approaches
based on semantic attributes leverage the capability
of humans to categorize yet unseen classes by learning
mappings from image features to human recognizable
attributes. It is assumed that while training data for
novel classes do not exist, knowledge of their seman-
tic attributes is available. For instance we may have a
set of animal images that does not include tigers but
still be aware of this large, striped, feline class. The
objective is to learn attribute classifiers that transfer

to novel images well enough to produce accurate class
predictions.

Hierarchical and attribute-based classification meth-
ods provide different types of information; the former
gives a projected position in an established hierarchy
while the latter provides a ranked listing of potential
classes and their estimated probabilities. We find that,
when allowing for novel classes, the rank of the true
class obtained from an attribute-based classifier is gen-
erally smaller (better) than the number of potential
classes remaining after hierarchical classification. How-
ever the former gives no notion of hierarchical context;
in fact the top-ranked classes may come from very dif-
ferent regions of a ground truth hierarchy. Hence the
two approaches have complementary strengths.

To leverage these different benefits, we investigate
methods for combining the two approaches. We work
in both directions. Starting with attributes, we show
that the posteriors generated from attribute-based
classification can be used as input to hierarchical clas-
sifiers in order to achieve an increase in average infor-
mation gained in zero-shot applications. Conversely,
starting with hierarchies, we demonstrate an advantage
in using hierarchical classifiers to pare down the ranked
lists produced by attribute-based analyses. Through-
out we consider only “blind” zero-shot applications, or
those where it is not known whether a given test image
comes from a previously seen or unseen class.

2 Related Work

Many approaches for hierarchical classification have
recently been published [2, 3, 4, 5]. One particu-
larly elegant method for hierarchical classification is
the Dual Accuracy Reward Trade-off Search (DARTS),
described in [6] and below. Here we utilize DARTS as
well as the closely-related Maximum Expected Reward
(MAX-EXP) approach, also described in [6].

Recent works on zero-shot classification include [7, 8,
9, 10]. In this study we use class rankings and attribute
posterior probabilities similar to the direct and indirect
methods in [11].

One previous work incorporating attribute estima-
tion into a hierarchical approach is [12]. In [12], sets
of both distinguishing attributes and refined attribute
classifiers are specified at each inner node. This en-
ables improved zero-shot classification performance, al-
though in a manner that differs from our approach.

3 Zero-Shot Classification Methods

The hierarchical classification and attribute-based
approaches employed in this work are described below.
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3.1 Hierarchical Classification

The DARTS algorithm [6] trades off accuracy and
specificity to generate appropriate classifications for
objects of varying certainties. It finds a classifier that
solves the optimization problem

maximize
f

Rpfq

subject to Φpfq ě 1´ ε,
(1)

where f is the chosen classifier, Rpfq is the average
reward, Φpfq is the expected likelihood that the true
class is located at or is a descendant of the chosen
node of the hierarchy, and 1 ´ ε is the desired mini-
mum accuracy. Here the reward is defined in terms of
information gained by reducing the number of poten-
tial bottom level “leaf” classes.

In [6], the problem is parameterized via a Lagrange
Multiplier. For classifier f and multiplier λ, the La-
grange function Lpf, λq is given by

Lpf, λq “ Rpfq ` λpΦpfq ´ 1` εq. (2)

The optimal λ is determined through a binary search,
as it can be shown that Φpfq and Rpfq are non-
decreasing in opposite directions. The resulting op-
timal classifier is given by

fλpxq “ argmax
vPV

prv ` λqpY |Xpv|xq, (3)

where rv is the reward for node v in the hierarchy V
and pY |Xpv|xq is the posterior probability of an im-
age described by x being in or a descendant of node
v. This posterior can be obtained in different ways. In
[6], one-vs-all linear SVM classifiers are trained on the
set of training classes Y , which are the leaf nodes of
the hierarchy. Probability distributions are generated
by applying Platt Scaling [13] to Y and summing up
the tree. Note that the parameter λ is learned using
both the training data and the true training classifica-
tion labels, accounting for some tuning of trust in the
posterior estimates.

In addition to DARTS, we investigated a more direct
approach to solving (1). This MAX-EXP method (also
from [6]) calls for selection of the node with highest ex-
pected reward, subject only to a threshold in posterior
probability. This threshold is learned to guarantee a
pre-defined average accuracy in the validation data.
Formally, this classifier is defined by

fθpxq “ argmax
vPV:pY |Xpv|xqąθ

rvpY |Xpv|xq, (4)

where θ is the posterior probability threshold.
Finding optimal values for the parameters λ and θ

can be difficult. In the case of λ, the upper bound is
determined by the smallest ratio of true class posterior
to another posterior in the training data. When erro-
neous posteriors are present, arbitrarily large λ values
will be required to achieve high accuracy. This can
result in the classifier often pushing all inputs to the
top/root node, resulting in uninformative choices. The
same behavior occurs for MAX-EXP, but requires θ to
be pushed arbitrarily close to 1 to achieve high required
accuracies.

Another notable issue with both DARTS and MAX-
EXP is the lack of uniformity in their performance

across class. To guarantee an overall accuracy, the al-
gorithms will often neglect more difficult classes while
maximizing their performance on easier classes. While
we do not tackle it here, this issue may be addressed by
adjusting the rewards to emphasize different branches
of the tree.

3.2 Classification based on Semantic Attributes

Semantic attributes provide a bridge from automat-
ically generated image features to human intuition. A
learned mapping from features to attributes can be
applied to both non-novel and novel classes, enabling
zero-shot learning. Here we focus on the direct and in-
direct approaches discussed in [11, 14]. We define the
feature space as X , the set of non-novel labels as Y,
and the set of novel labels as Z.

In the direct method, a classifier is learned for each
attribute from the examples in the training data. We
use 3-class classifiers for each attribute, allowing for
both yes and no states (denoted 1 and -1), as well as
an in-between or “not-applicable” state (0). We start
with a set of labeled examples px1, l1q , . . . , pxn, lnq P
X

Ś

Y, where x1, . . . ,xn are deep convolutional neural
network features. We then use the class-to-attribute
matrix V to create a set of attribute-labeled training
examples px1, u1q, . . . , pxn, unq P X

Ś

t´1, 0,`1u for
each attribute j “ 1, . . . , Na. We build Na attribute
classifier models from these data using Linear Support
Vector Machines (LSVM) and use them to infer the
feature to attribute mapping ṽpxq.

In the indirect method, we first learn the posterior
distribution on class given features, P pY |Xq. This is
achieved through one-vs-all LSVM classification fol-
lowed by Platt sigmoid scaling [13]. P pY |Xq is trans-
lated to attribute estimates through a weighted aver-
age:

EP rvjs “
ÿ

iPY

P pclass “ i|X “ xqvi,j . (5)

The final value for each attribute estimate is then
thresholded to t´1, 0,`1u.

To generate class estimates and probability distribu-
tions (both non-novel and novel), we employ the max-
imum likelihood (ML) method in [11]. This method
uses the measured error rates of each attribute clas-
sifier in a validation data set as well as assumed in-
dependence of errors to compute posterior likelihoods
of class given the inferred attribute vector. Given an
estimated attribute vector v, the likelihood of class i
is given by

P px|yiq „ P ppv “ viq «
ź

j“1,..,Na

P ppvpjq|vi,jq, (6)

where the vi are the attribute vectors in V correspond-
ing to the class i P A “ Y Y Z. Previous experiments
showed generally equivalent or better performance of
ML class ranking to distance-based ranking. Critical
to our purposes here, the ML method provides class
posterior distribution estimates.

3.3 Combination Approaches

These attribute-based classification schemes may be
incorporated into hierarchical classification in at least
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Figure 1. Ground truth hierarchy used in experiments, generated using clustering of leaf node attributes and
subsequent cross-referencing with WordNet[15].

two ways. First, the class posterior probability es-
timates derived from the attribute analysis may be
used as the inputs to the hierarchical classifier. The
attribute-based posteriors offer additional semantic in-
formation to the classifiers, potentially improving zero-
shot classification performance. Second, the hierarchi-
cal classifier can be used to choose the number N of leaf
nodes to consider from the class rankings provided by
the attribute-based approach. We refer to this latter
approach as “TOPN.”

4 Experiments and Results

4.1 Data Processing

The data set chosen for this analysis was comprised
of 192,870 images from 150 ImageNet [16] classes. The
images were split into training, validation, and test-
ing sets according to a 90% ´ 5% ´ 5% split. Of the
original 150 classes, 30 were held out of training for
zero-shot analysis. All images were run through the
OVERFEAT deep convolutional network [17], produc-
ing a set of 4096-dimensional feature vectors.

Each class was additionally endowed with a set of
218 human-recognizable attributes [7]. The ground
truth hierarchies required for the hierarchical classifiers
were generated through clustering of these attribute
vectors. Each data class was taken to be a bottom level
node of the hierarchy. The pairwise correlation dis-
tances of the semantic attribute vectors for each class
were computed and clustered to identify higher level
groupings [18]. Each higher level node was matched
to the WordNet[15] node that represented the nearest
common parent of all its children (Figure 1).

The posterior class probability estimates required for
conventional hierarchical classification were generated
as follows. First the feature vectors were used to train
one-vs-all linear SVM classifiers for each training class
using the LIBLINEAR default C=1 [19] (instead of the
C=100 values used in [6]). Platt scaling [13] was then
applied to generate leaf node probability estimates for
each input image. The probabilities of higher level

nodes were estimated through summation of the prob-
abilities of their children, moving up the hierarchy. For
this summation the tree was pruned to remove the 30
novel classes, consistent with [6].

4.2 Comparison of Hierarchical Approaches

These data were used to evaluate the hierarchical
classification strategies described in Section 3. The ef-
fects of using posterior probabilities generated by the
attribute analysis (6) in place of the class-based pos-
terior probabilities as classifier inputs as well as the
“TOPN” cross-referencing approach were quantified.
When attribute-based posteriors were used the full hi-
erarchy (including novel classes) was employed, in con-
trast to conventional hierarchical classification.

To characterize the different methods, we plotted the
average reward versus the average containment accu-
racy observed in the testing set. As in [6], reward for
an individual image was defined in terms of informa-
tion gain:

rpvq “ log2 |Y| ´ log2

ÿ

yPY
rv P πpyqs . (7)

Again v represents the chosen node and Y the set of
leaf nodes. The set of ancestors of a leaf node y is
πpyq. Traces were generated by considering a range of
hierarchical classifier parameters (λ for DARTS, θ for
MAX-EXP).

The reward-accuracy curves for the various meth-
ods applied to previously seen and unseen classes are
shown in Figures 2 and 3, respectively. As expected,
performance is far superior in classes for which there is
training data. Nonetheless, as in [6], the hierarchical
classifiers are able to provide a non-negligible amount
of information when applied to novel classes. Notably
the relative performance of different classifiers differs
in non-novel and novel applications. Many methods
provide comparable performance for non-novel classes,
with standard DARTS narrowly offering the highest
average reward for high containment accuracy. In the
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Figure 2. Hierarchical classification of images
from previously seen (non-novel) classes.
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Figure 3. Hierarchical classification of images
from previously unseen (novel) classes.

novel case, MAX-EXP generally outperforms DARTS.
The TOPN MAX-EXP method shows the benefit of
incorporating rankings from both the direct and indi-
rect approaches, with the rankings from the direct ap-
proach being more advantageous. The performance of
DARTS on novel classes is seen to be significantly im-
proved1 for moderate accuracy levels through the use
of posteriors derived from direct zero-shot methods as
compared to conventional class-based posteriors.

5 Conclusion

We have evaluated and combined multiple meth-
ods for hierarchical and attribute-based classification,
quantifying performance on previously seen and un-
seen classes separately. We see different relative
performances of methods in the two cases. While
most approaches perform similarly on previously seen
classes, significant information gains on previously un-
seen classes are achieved by augmenting conventional
hierarchical classifiers with attribute-based input.

1The form of the reward metric leads to differences in small
rewards representing much larger reductions in the number of
potential leaf classes than the same differences in high rewards.
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