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Abstract

Image classification has been revolutionized by deep
convolutional neural networks. Using previous state-
of-the-art classification methods like Fisher vector en-
coding in combination with deep CNNs has been shown
to be promising. Motivated by the recent work on dense
CNN features to extract Fisher encoding(FV-CNN), we
present a scheme to discover better visual words with
CNNs, to obtain improved Fisher vector features. Our
method (Deep Visual Words-DVW) learns semantic vi-
sual clusters per each category, by iteratively learning
and refining groups of visual patches. DVW represents
an efficient feature space embedding to capture the dis-
criminative potential between meaningful visual clus-
ters. We evaluate our approach on popular datasets
in object, scene and action classification and outper-
formed the state-of-the-art: scene classification MIT
indoor, object categorization PASCAL VOC 2007 and
Stanford40 human actions.

1 Introduction

The discovery of effective image representations
plays an important role in achieving promising visual
recognition performance. Deep convolutional neural
networks [1] can be helpful for this purpose. Recent
works [2, 3, 4, 5, 6] and the results thereof prove
this point. Previously, Bag-of-Word models have been
shown to extract global image features that aggre-
gate local image descriptors into better representa-
tions. These are robust to variations in visual appear-
ance like scaling, rotation and translation. The most
significant improvement in these models is the Fisher
kernel [7, 8].

To exploit CNN activation as a generic image fea-
ture, we can extract information from different lay-
ers of the CNN, and in particular from the fully con-
nected layers where the image has been pushed into a
pre-trained CNN model. This setting may still fail to
sufficiently mind the visual variations though. Cim-
poi et al. [9] proposed FV-CNN, a pooling method to
overcome these issues. FV-CNN uses CNN features ex-
tracted from dense image patches and encodes them by
Fisher vectors. This work is similar in flavour to other
methods like [10, 11], that combine pooling strategies
with CNN activations. These works have shown that
using CNN features for image patches or parts and
encoding them using methods like Fisher vectors can
perform well.

In this paper, we propose a simple and more effi-
cient method to automatically discover visual category
parts. We also learn and fine-tune a deep CNN feature
extractor for each part concept. We re-design discrimi-
native patch mining methods [4, 12] and use deep CNN

feature learning as a module in the loop. We demon-
strate that this 1) yields more effective representations
for visual words and 2) configures meaningful discrim-
inative patch clusters as visual words. Utilizing these
new visual words in Fisher vector encoding yields im-
provement for both.

Selecting distinctive parts and reformulating their
representation are the main goals that we aim for.
Our iterative pipeline can reconfigure groups of vi-
sual parts and refine their feature learning process
in each iteration. Our experiments prove that these
new deep visual words can be effective when combined
with a Fisher vector representation and that they yield
promising results for scene classification (MIT indoor
67 [21]) and object classification (PASCAL VOC 2007
[22]) and human actions (Stanford40 [24]).

The rest of the paper is organized as follows. Re-
lated work is discussed in section 2. Section3 de-
scribes our proposed framework. Section 4 evaluates
our method and compares the results with the state-
of-the-art. Section 5 concludes the paper.

2 Related Works

There has been quite some works related to discrimi-
native image parts learning and mid-level visual recog-
nition [13, 14, 15, 9]. These contributions share the
use of some part discovery modules and an encoding
method to efficiently represent the parts. Image clas-
sification works better by encoding visual words. The
main difference between the existing work and ours is
that we involve feature learning throughout the entire
pipeline.

Juneja et al. [15] proposed a simple and effective
method to evaluate the distinctiveness of visual clus-
ters, which is based on the ranking of entropy. Singh
et al. [13] probe visual part mining in a weakly super-
vised manner, using image level labels. Diba et al. [23]
has introduced an iterative CNN training for mining
discriminative patches to recognize actions and human
attributes.

Cimpoi et al.s work [9] is similar in vein as our work,
in that they use Fisher vector encoding of local CNN
activations, for image classification and texture recog-
nition. Our work is different in the way we apply a
method to discover more effective visual patterns and
words to Fisher encoding.

3 Method

In this section we discuss our pipeline for image clas-
sification. After presenting the overview and the moti-
vation behind the work, we introduce the proposed fea-
ture extraction. In the final part the encoding method
is explicated.
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Figure 1. Flow of our pipeline: Iterative learning CNN for ditinctive patch clusters, re-clustering them and cleaning
outliers from clusters. After configuring patch clusters and their CNN network, classification images by encoding
local features using fisher encoding and new CNN features is done.

3.1 Approach overview

The main idea of the approach is to exploit new vi-
sual words and efficient feature embedding for them
to obtain powerful local features aggregation by fisher
vector encoding. Similarly, [9] extracts dense local
CNN features and encode them by fisher vector, but
there is no procedure to mining visual words or refining
their local feature representation.

We introduce an iterative pipeline to extract
more discriminant features out of densely distributed
patches. To encode the extracted patch features
we first use the common Fisher vector encoding
method [8]. To improve the performance of recogni-
tion, we propose a modification in Fisher vector en-
coding method. It aggregates the features extracted
from dense patches to produce a global feature for the
whole image. The overview of the proposed pipeline is
shown in Fig. 1.

The features which are extracted from a convolu-
tional neural network trained on image patch - class
label pairs, still show a weak feature embedding. This
due to a mismatch between the nature of the input
patches and their output labels. In addition, the clas-
sification of the patches is only weakly supervised, be-
cause patch labels do not come with the training set.
To improve the feature embedding for patches we need
a module that simultaneously extracts discriminant
features and predicts the subclass labels of the patches.
We discuss the details of the proposed module in sec-
tion 3.2.
As we discuss in detail in section 3.3, in addition to
achieving a powerful feature embedding, the proposed
iterative procedure yields discriminant subclass clus-
ters. Hence, we use the extracted discriminant clusters
instead of the GMM clustering procedure of standard
Fisher vector encoding.

3.2 Discriminant Feature Extraction

In this section, we introduce our iterative discrimi-
nant feature extraction and clustering method, and the
processing blocks in the corresponding pipeline.

To achieve the aforementioned desired properties of
the module powerful embedding and producing dis-
criminant clusters we need carry out the following

tasks in an iterative manner. Firstly, we extract fea-
tures from the image patch using the CNN trained on
cluster labels. Secondly, we update the cluster labels
to maximize the discrimination between the clusters.
Thirdly and finally, we clean the clusters to render
them as rich as possible, because we believe remov-
ing outlier samples of clusters and retraining CNN with
cleaner clusters allows enriched representation. Details
of these processing blocks follow next.

3.2.1 Patch Convolutional Neural Network

The CNN block is the basis of the proposed iterative
procedure. It is trained to extract discriminant fea-
tures from the image patches. In the training phase the
inputs of the model are the extracted image patches,
and the corresponding labels are the cluster labels pro-
duced by the previous iteration. After the network is
trained, the output of the network for an image patch
is the final fc7 layer feature.

3.2.2 Patch Cluster Updating and Classifier
Training

The cluster updating module is based on subdividing
each class into a specific number of subclasses (clus-
ters). The goal is to find clusters that discriminate
a subclass against other subclasses, as well as against
other classes at the parent level. To do so we apply
the Mid-Level Deep Pattern Mining (MDPM) algo-
rithm [4] to the features of the previous stage.
The classifier training procedure in this block is done
by training an LDA classifier on the extracted features
as input and the computed clusters as labels.

3.2.3 Cluster Cleaning

Cleaning the clusters by picking out weakly discrim-
inant patch instances and putting them in a negative
class, renders clusters more discriminant and subse-
quently yields a more powerful feature embedding.
This is achieved by thresholding the output score of
the LDA classifiers of the previous phase.

After an adequate number of iterations, the dis-
criminant patch features and clusters are available for
encoding.
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Method mAP(%)

MDPM [4] 75.2
Deep Filter Banks [9] 76.4

SCFVC et al. [20] 76.9
CNN (VGG-M net) 72.2

Ours Fisher 77.4
Ours Modified Fisher 79.2

Table 1. Mean average precision on the PASCAL
VOC 2007 object dataset and comparison with
previous methods. The results are reported on
the test set of PASCAL VOC. The first row shows
the baseline of the work.

3.3 Feature Encoding

The last stage before training a classifier and
actually applying it for recognition is to encode the
extracted features from the patches, in order to ag-
gregate them into a global image feature. The success
of previous work that used Fisher vector encoding [7]
suggests that scheme for our dense features encoding.
As the results of the experimental section show,
the proposed iterative process adds power to the
feature embedding. As a consequence, the features
conducted from Fisher vector encoding become more
discriminant and improve the performance of image
classification.
On the other hand, Fisher vector encoding is based on
a visual dictionary learning method using Gaussian
Mixture Models (GMM), which does not sufficiently
guarantee efficient discriminating performance by the
output clusters of the dictionary, despite the effort
of doing so. This weakness motivates us to use the
discriminative output clusters of the iterative proce-
dure as the visual dictionary clusters instead of those
from GMM learning. By so doing, we get a significant
improvement in recognition accuracy. This testifies
to the power of the output clusters when it comes to
discriminating between themselves. The cause of this
clustering process being more powerful than others
lies in the joint feature learning and cluster cleaning.

The final stage of the method classifies the en-
coded global features. As the output feature of the
Fisher vector encoding is linear separable we use a
linear multi-class SVM to make prediction in the
testing phase .

4 Experiments

We have tested our proposed framework on two clas-
sification tasks, i.e. object and scene and action recog-
nition. The following sections expound the details of
the implementation, datasets, and results.

4.1 Experimental Setup

This section introduces the experimental setup of
the convolutional neural network and of the encoding
based on Fisher vectors.

4.1.1 Patch Convolutional Neural Network

The network has been trained using the caffe CNN
training package [17] with back-propagation. The used

CNN model is VGG-M [18] which performs better than
regular models like [2] with the same cost. We use
the weights of the network trained on the ImageNet
dataset [19] as initial weights and fine-tune our net-
works on the object, scene and action datasets. We set
the learning rate of CNN training to 0.0001, and the
batch size to 100.
The patches are densely sampled from the input images
at 3 different scales (128*128, 160*160, and 192*192
patches from a resized image with a stride of 16).

4.1.2 Fisher Vector Encoding

The learned Fisher dictionaries have 64 Gaussian
components, resulting in a 52K-dimensional descrip-
tor. To create the dictionary of the modified Fisher
encoding, we use all instances with a specific cluster
label and calculate their mean and variance for each
cluster.

4.2 Dataset:

Object: The evaluation dataset used for object
class recognition is the PASVAL-VOC 2007 dataset.
This dataset contains 9963 images containing 24,640
annotated objects for 20 different classes, split into
training, validation, and testing subsets.

Scene: For evaluating our method on scene recog-
nition, we use the MIT Indoor Scene dataset. The
dataset consists of 15620 instances of 67 indoor cate-
gories. The dataset is split into two training and test-
ing subsets with equal numbers of images.

Action: The Stanford40 action dataset contains to-
tal of 9532 images and 40 classes of actions, split into
train set containing 4000, and test set containing 5532
instances.

4.3 Object Recognition

We report the resulting accuracy of object recog-
nition in table 1 and compare those results with the
reported mean average precision of [4, 9, 20]. As
the Deep filter banks, MDPM and CNN methods are
each, parts of our proposed method they are sup-
posed as the baselines of the method. Ours Fisher
and Ours Modified Fisher report the results of our ap-
proach, using the standard Fisher vector encoding and
the proposed modified Fisher vector encoding. As it
can inferred from the results we perform state-of-the-
art in object recognition task on the PASCAL-VOC
2007 dataset.

4.4 Scene and Aaction Recognition

The classification results of the proposed methods on
the MIT Indoor Scene dataset are reported in Table 2.
We contrast our results with the results of [4, 9, 20, 15].
Same as the reported results of object recognition in
table 1, the Deep filter banks, MDPM and CNN meth-
ods could be considered as the baselines of our method.
The other rows on top of the table report the average
precision of other recent works on the dataset, and
the two bottom rows are the results of the proposed
method. As the reported results show we achieve state-
of-the-art on the MIT indoor dataset in scene recog-
nition task same as in object recognition. We have
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Method MIT 67 Stanfrod40

Juneja et al. [15] 63.18 −
ObjectBank [25] − 32.5

EPM [26] − 40.7
Dorsch et al. [14] 64.03 −
SCFVC et al. [20] 68.2 −

MDPM [4] 69.7 46.8
Deep Filter Banks [9] 74.2 −
CNN (VGG-M net) 62.5 45.9

Ours Fisher 75.9 49.8
Ours Modified Fisher 77.4 53.2

Table 2. Mean average precision on the MIT in-
door scene and Stanford40 action dataset and
comparison with previous methods.

a similar for recognizing actions. The evaluation of
our approaches for actions can be found at Table 2.
The results present an outperforming over the previ-
ous methods in this human action dataset.

5 Conclusion

Strong description of local patches and meaningful
visual words will improve image classification perfor-
mance and provide more semantic representation for
this task. In this work, we propose an iterative pipeline
to learn visual clusters and also CNN feature embed-
ding jointly. The learned discriminative visual clusters
and their new CNN feature extractor benefit fisher vec-
tor encoding to outperform state-of-the-art methods in
image classification which we prove it by our results on
scene and object categorization task.
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