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Abstract

In this contribution, the experimental results of test-
ing a monocular visual odometry algorithm in a real
rover platform over flat terrain for localization in out-
door sunlit conditions are presented. The algorithm
computes the three-dimensional (3D) position of the
rover by integrating its motion over time. The mo-
tion is directly estimated by maximizing a likelihood
function that is the natural logarithm of the conditional
probability of intensity differences measured at differ-
ent observation points between consecutive images. It
does not requiere as an intermediate step to determine
the optical flow or establish correspondences. The im-
ages are captured by a monocular video camera that has
been mounted on the rover looking to one side tilted
downwards to the planet’s surface. Most of the ex-
periments were conducted under severe global illumi-
nation changes. Comparisons with ground truth data
have shown an average absolute position error of 0.9%
of distance traveled with an average processing time per
image of 0.06 seconds.

1 Introduction

In order to improve the safety and autonomous nav-
igation accuracy of planetary rovers [1], such as the
Mars Exploration rover Opportunity and the Mars Sci-
ence Laboratory’s rover Curiosity, in slippery environ-
ments, after moving a small amount, the rover is of-
ten commanded to perform the correction of any error,
which occurred because of wheel slippage, by using the
rover’s position estimate that is determined by a fea-
ture based stereo visual odometry algorithm [2]. This
algorithm estimates the rover’s motion tracking fea-
ture points over a sequence of image pairs, which are
captured by a stereo camera, and integrating the esti-
mated motion over time to obtain the rover’s position.
It was initially described in [3], then it was further
developed in [4], until a real-time version of it was im-
plemented and incorporated in the rovers Spirit and
Opportunity of the Mars Exploration Rover Mission
[2]. A more robust and faster updated version of it is
currently being used in the Curiosity rover [5]. There
are other similar algorithms in the scientific literature
[6, 7, 8], which have even been adapted for to oper-
ate with a monocular [8] or an omnidirectional video
camera [9], and recently, extended to Simultaneous Lo-
calization and Mapping (SLAM) [10]. Refer to [11] for
a comprehensive tutorial on visual odometry.

In [12], a monocular visual odometry algorithm
based on intensity differences was proposed as an al-
ternative to the long-established feature based stereo

visual odometry algorithms, which avoids having to
track feature points for motion estimation, tasks that
are known to be very difficult, to consume a lot of
processing time and are prone to match errors due to
large motions, occlusions or ambiguities, which greatly
affect the 3D motion estimation [4]. With this algo-
rithm it is possible to estimate the 3D motion of the
rover by means of the maximization of the conditional
probability of the intensity differences measured at key
observation points between two successive images. The
images are taken by a single video camera rigidly at-
tached to the rover. The key observation points are
image points whose linear intensity gradients are found
to be high.

Despite that in [12] the above intensity-difference
based monocular visual odometry algorithm has been
extensively tested with synthetic data, an experimen-
tal validation of the algorithm in a real rover platform
in outdoor sunlit conditions is still missing. This pa-
per’s main contribution will be to provide the results of
the first outdoor experiments towards validation of the
algorithm, which will be obtained for now on surfaces
of little geometrical complexity such as flat terrain, to
help to clarify whether the algorithm really does what
is intended to do in real outdoors situations under se-
vere global illumination changes.

This contribution is organized as follows: in section
2, the monocular visual odometry algorithm is briefly
described; in section 3, the experimental results are
presented; and finally, in section 4, a summary and
the conclusions are given.

2 Monocular visual odometry algorithm

Here the algorithm for estimating the rover’s 3D mo-
tion from two consecutive intensity images Ik−1 and Ik
will be briefly presented (see [12] for a more detailed
description). The images depict part of the planet’s
surface next to the rover and are taken by a single
video camera with coordinate system (q, r, s) at time
tk−1 and time tk, where the camera coordinate sys-
tem and robot coordinate system are supposed to be
the same. The camera has been mounted on the rover
looking to one side tilted downwards 37 degrees and
the images are supposed to be formed through per-
spective projection with focal length f onto a camera
plane with coordinate system (x, y), where the focal
lens f is set according to pre-calibration results ob-
tained using the Tsai algorithm [13]. The 3D shape
of a rectangular portion of the surface part that is be-
ing captured by the camera is assumed to be flat and
rigid and described by meshing together two triangles,
forming a rectangle with coordinate system (X,Y, Z).
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This 3D shape and its relative pose to the camera co-
ordinate system (q, r, s) are supposed to known at time
tk−1. The pose is described by a set of six parameters:
the three components of a 3D position vector and three
rotation angles.

A set of N observation points are also supposed to
be known at time tk−1. An observation point lies on
one of the two triangles at barycentric coordinates Av

with respect to the corresponding triangle’s vertex 3D
positions and carries the intensity value I and the lin-
ear intensity gradients g = (gx, gy)> at surface position
Av. Let A = (Aq, Ar, As)

> be the corresponding 3D
coordinates of the observation point with respect to
the camera coordinate system, where the component
As represents its depth. These shape, pose and obser-
vation points are referred here as the surface model at
time tk−1. The surface model at time tk−1 is obtained
by moving (rotating and translating) the surface model
from its pose at time tk−2 to the corresponding pose at
time tk−1 with the negative of the rover’s 3D motion
estimates from time tk−2 to time tk−1.

The surface model at time t0 is created and ini-
tialized in three steps. By the first step, the surface
model’s shape is initialized as a flat and rigid mesh
of two triangles forming a rectangle with dimensions
40x30cm2, whose coordinate system (X,Y, Z) is placed
at the upper left corner. By the second step, the pose
of the initial surface model with respect to the camera
coordinate system (q, r, s) is estimated by applying the
Tsai’s coplanar camera calibration algorithm [13]. The
pattern is removed from the scene after calibration is
performed. The camera calibration also ensures met-
ric motion estimates. In the third step, after surface
model’s shape and pose initialization, the observation
points are created and initialized. The initial observa-
tion points are selected as the image points with high
linear intensity gradients (|g| > δ1) in the first image
I0. This selection rule will reduce the influence of the
camera noise and increase the accuracy of the estima-
tion. The value of the threshold δ1 was heuristically
set to 12 and remains constant throughout the experi-
ments. After an observation point at image position a
has been selected, its 3D position A is computed with
respect to the camera coordinate system as the inter-
section of the a’s line of sight and the plane containing
the corresponding triangle of the surface model’s shape
at time t0. Then, its barycentric coordinates Av with
respect to the triangle’s vertex 3D positions are com-
puted. Finally, its position, intensity value and linear
intensity gradients are set to Av, as well as to the cor-
responding intensity value I and to the linear intensity
gradients g measured on the first image I0 at position
a, respectively.

Due to the movement of the robot, it is possible
that at time tk−1 � t0 the camera will begin to lose
sight of the rectangular portion of the planetary surface
being described by the surface model. This situation is
detected by checking if any of the vertices of the surface
model at time tk−1 are outside of the camera’s field of
view. If at least one of them is outside, the surface
model’s pose is reinitialized with the same position and
orientation used in time t0, as well as all observation
points are deleted and new ones are created by using
the intensity image Ik−1 captured at time tk−1 instead
of the first intensity image I0.

The rover’s 3D motion from time tk−1 to time tk
is described by a rotation followed by a translation
of its own coordinate system (q, r, s) with respect
to the surface model’s coordinate system (X,Y, Z).
The translation is described by the 3 components of

the 3D translation vector ∆T = (∆TX ,∆TY ,∆TZ)
>

and the rotation is described by 3 rotation an-
gles: ∆ωX ,∆ωY ,∆ωZ . Here, the unknown six mo-
tion parameters are represented by the vector ∆B=
(∆TX ,∆TY ,∆TZ ,∆ωX ,∆ωY ,∆ωZ)>. The estimation
is achieved by maximizing a likelihood function consist-
ing of the natural logarithm of the conditional proba-
bility of intensity differences at the N key observation
points. The conditional probability is computed by
expanding the intensity signal by a Taylor series and
neglecting the nonlinear terms, as well as using a lin-
earized 3D observation point position transformation,
which transforms the 3D position of an observation
point before motion into its 3D position after motion
given the rover’s 3D motion parameters. Statistically
independent zero-mean, common variance, normally
distributed intensity measurement errors at the obser-
vation points are also assumed. The resulted motion
estimates have the following compact form:

∆B =
(
O>O

)−1
O>FD, (1)

where
O> = (o(N−1)>,o(N−2)>, . . . ,o(0)>)

o =



f ḡx
As
f ḡy
As

− f (Aq ḡx+Ar ḡy)
A2

s

− f [Aq ḡx(Ar−Cr)+Ar ḡy(Ar−Cr)+Asḡy(As−Cs)]
A2

s
f [Ar ḡy(Aq−Cq)+Aq ḡx(Aq−Cq)+Asḡx(As−Cs)]

A2
s

− f [ḡx(Ar−Cr)−ḡy(Aq−Cq)]
As


FD> = (fd(a(N−1)), fd(a(N−2)), . . . , fd(a(0)))

O is the observation matrix; A is the 3D position of
an observation point with respect to the camera co-
ordinate system at time tk−1, which in turn is com-
puted from its barycentric coordinates Av and the tri-
angle’s vertex 3D positions at time tk−1 with respect
to the camera coordinate system; a is the 2D posi-
tion of the projection of A into the camera plane; ḡ
is the average of the linear intensity gradients g of
the observation point and the linear intensity gradi-
ents of the current intensity image Ik at position a;
C = (Cq, Cr, Cs)

> is the 3D position of the planet’s
surface model at time tk−1; f the focal length of the
camera; and FD is a vector with the intensity differ-
ences fd(a(n)) = Ik(a(n)) − I(n) measured at the pro-
jections a(n), n = 0, 1, · · · , N−1, of the N observation
points into the image plane.

Since the observation matrix O resulted from sev-
eral truncated Taylor series expansions (i.e. approxi-
mations), the Eq. (1) needs to be applied iteratively to
improve the reliability and accuracy of the estimation.

Assuming that the rover’s coordinate system (q, r, s)
coincides with the fixed surface coordinate system
(α, β, γ) at time t0, the rover’s 3D position with re-
spect to that fixed coordinate system is computed by
integrating the estimated frame to frame rover’s 3D
motion over time.
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Figure 1. Clearpath Robotics
TM

Husky A200
TM

rover platform and Trimble R© S3 robotic total sta-
tion used for experimental validation.

Figure 2. Example of an image with resolution
640x480 pixel2 captured during experiment num-
ber 334. The camera is located at 77 cm above
the ground looking to the left side of the rover
tilted downwards 37 degrees.

3 Experimental Results

The intensity-difference based monocular visual
odometry algorithm has been implemented in the
programing language C and tested in a Clearpath

Robotics
TM

Husky A200
TM

rover platform (see Fig. 1).
In this contribution, our efforts were concentrated on
measuring its performance in rover localization on flat
ground in real outdoor sunlit conditions, where the ab-
solute position error of distance traveled was used as a
performance measure. In total 343 experiments were
carried out over flat paver sidewalks only (see Fig. 1),
under severe global illumination changes due to cumu-
lus clouds passing fast across the sun. As it has been
done on Mars [2], special care was taken to avoid the
rover’s own shadow in the scene, because the inten-
sity differences due to moving shadows can confuse the
motion estimation algorithm. The processing time per
image was also measured.

During each experiment, the rover is commanded to
drive on a predefined path at a constant velocity of 3
cm/sec over a paver sidewalk, usually a straight seg-
ment from 1 to 12 m in length or a clockwise arc from
45 to 280 degrees with 2.5 m radius, while a single
camera with a real time image acquisition system cap-
tures images at 15 fps and stores them in the onboard
computer (see Fig. 2). Although the rover’s real time
image acquisition system consists of three IEEE-1394

Table 1. Summary of experimental results.

mean standard min max
deviation

Observation 15906 67.74 15775 15999
points

per image
Iterations 14.88 1.89 12.33 19.09
per image

Processing time 0.06 0.006 0.05 0.08
(in seconds)
per image
Absolute 0.9% 0.45% 0.31% 2.12%
position

error

cameras—a 6 mm Grey Point Bumblebee R©2 stereo
camera, a Grey Point 6 mm Bumblebee R© XB3 stereo
camera and a 6 mm Basler A601f monocular camera,
rigidly attached to the rover by a mast built in its
cargo area—only the right camera of the Bumblebee R©2
stereo camera was used in all experiments. This cam-
era has an image resolution of 640x480 pixel2 and a
horizontal field of view of 43 degrees (see Fig. 2). It
is located at 77 cm above the ground looking to the
left side of the rover tilted downwards 37 degrees. Be-
cause during experiments with arc paths the rover is
commanded to rotate clockwise only, only images of
the ground outside the arcs can be captured with this
camera setup. The radial and tangential distortions
due to the camera lens are also corrected in real time
by the image acquisition system. This image acquisi-
tion software was developed under Ubuntu, ROS and
the programing language C.

Simultaneously, a Trimble R© S3 robotic total station
(robotic theodolite with a laser range sensor) tracks a
prism rigidly attached to the rover and measures its 3D
position with high precision (≤ 5 mm) every second
(see Fig. 1), where the position and orientation of
the local coordinate system of the robotic total station
with respect to the planet’s surface model coordinate
system at time t0 is precisely known.

After that, the intensity-difference based monocular
visual odometry algorithm is applied to the captured
image sequence. Then, the prism trajectory is com-
puted from the rover’s estimated 3D motion. Finally,
it is compared with the ground truth prism trajectory
delivered by the robotic total station.

All the experiments were performed on an Intel R©

Core
TM

i5 at 3.1 GHz with 12.0 GB RAM. In Table
1, the main experimental results are summarized. The
number of observation points N per image was 15906
on average with a standard deviation of 67.74, a min-
imum of 15775 and a maximum of 15999 observation
points. The average number of motion estimation iter-
ations per image was 14.88 with a standard deviation
of 1.89, as well as a minimum and maximum of 12.33
and 19.09 iterations, respectively. The processing time
per image was 0.06 seconds on average with a standard
deviation of 0.006, a minimum of 0.05 and a maximum
of 0.08 seconds. The absolute position error was 0.9%
of the distance traveled on average with a standard
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Figure 3. Trajectory obtained by visual odometry
(in red) and corresponding ground truth trajec-
tory (in blue) for the experiment number 334.
In the experiment the rover was commanded to
drive a clockwise arc of 280 degrees with radius
of 2.5 m over paver sidewalk.

deviation of 0.45%. The minimum and the maximum
absolute position error was 0.31% and 2.12%, respec-
tively. The tracking was not lost in any of the experi-
ments. As an example, Fig. 3 depicts the visual odom-
etry trajectory and the robotic total station trajectory
for the path number 334 forming an arc segment of
the 343 different paths driven by the rover during the
experiments. Although the experiments so far have
been only on flat ground, these results closely resem-
bles those achieved by known traditional feature based
stereo visual odometry algorithms [7, 8, 2, 9], whose
absolute position errors of distance traveled are within
the range of 0.15% and 2.5%. Although it is difficult to
draw any conclusions from this comparison, since our
experiments were carried out in different surface envi-
ronments and driving modes, we believe that these re-
sults are still relevant because they reveal the potential
of the algorithm for obtaining the rover’s position in
real outdoors situations, even under severe global illu-
mination changes, in a non-traditional way, without es-
tablishing correspondences between features or solving
the optical flow as an intermediate step, just directly
evaluating the intensity differences between successive
frames delivered by a monocular camera.

4 Conclusion

After testing the monocular visual odometry algo-
rithm proposed in [12] in a real rover platform for
localization in outdoor sunlit conditions, even under
severe global illumination changes, over flat terrain,
along straight lines and gentle arcs at a constant ve-
locity, without the presence of shadows, and comparing
the results with the corresponding ground truth data,
we concluded that the algorithm is able to deliver the
rover’s position in average of 0.06 seconds after an im-
age has been captured and with an average absolute
position error of 0.9% of distance traveled. Although
experiments are still missing over different types of ter-
rain and geometries, particularly over rough terrain,
we believe that these results represent an important

step towards the validation of the algorithm and that
it may be an excellent candidate to be used as an alter-
native when wheel odometry and traditionally stereo
visual odometry have failed. It may also be a great
candidate to be merged with other visual odometry
algorithms and/or with sensors such as IMUs, laser
rangefinders, etc., to improve autonomous navigation
of current and future Moon and Mars rovers.

5 Future Work

In the future, the algorithm will be tested over dif-
ferent types of terrain and geometries, and also it will
be made robust to shadows.
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