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Abstract

This paper presents a novel single image super res-
olution (SR) based on a content-aware constraint and
an intensity-order constraint. The proposed method
generates an SR image by minimizing an energy that
consists of a data term, the content-aware constraint
and the intensity-order constraint. The content-aware
constraint can preserve texture patterns while reduc-
ing noise in a smooth region, while the intensity-order
constraint can reduce ringing artifacts by penalizing the
inconsistency of the intensity-magnitude relation. Ex-
perimental results show that the proposed method out-
performs existing reconstruction-based SR methods in
terms of PSNR and SSIM.

1 Introduction

Single image super resolution (SISR) is a technique
to generate a high-resolution (HR) image from an input
low-resolution (LR) image [15]. This technology is used
for various applications ranging from video and image
editing to document image up-sampling and surveil-
lance. SISR can be considered an ill-posed problem
because there is a resolution gap, i.e., an information
gap, between the LR image and the HR image. Vari-
ous constraints have been proposed to interpolate this
gap. In general, these constraints for the SISR can
be roughly classified into two types: 1) learning-based
and 2) reconstruction-based.

In the learning-based approach [18, 1, 8, 3, 4, 20,
19, 16], the constraint is designed based on training
images such as natural images [8], facial images [1], and
character images [18, 4]. Baker et al. [1] introduced an
exemplar-based constraint using the parent-structure
vector. Datsenko et al. [4] further extended Baker’s
method by removing outlier exemplars that might lead
to artifacts in the SR image. Recently, CNN-based
approaches [3] and more sophisticated exemplar-based
methods [20, 19] have also been proposed. In general,
the learning-based approach is very sensitive against
the residual between the actual degradation process
and the assumed image formation model. Therefore,
an accurate image formation model from the HR image
to the LR image is required. However, designing such
a model remains a challenge.

In the reconstruction-based approach [11, 5, 14, 15],
the reconstruction-based constraints are usually de-
signed based on generic image priors. For example,
the Tikhonov-based constraint [15] is modeled using
the L2 norm of the SR image intensity gradient, and

(a) Input image

(b) Input (blue box) (c) BTV [5] (d) Proposed

(e) Input (red box) (f) BTV [5] (g) Proposed

Figure 1. Results by proposed and existing meth-
ods. As shown in (c) and (f), over-smoothing and
ringing artifacts are generated by BTV [5]. The
proposed method can reduce these artifacts as
shown in (d) and (g).

Total Variation (TV) [14] and Bilateral Total Varia-
tion (BTV) [5] are designed based on the L1 norm of
the intensity gradient. Although these reconstruction-
based constraints are widely used in SISR, they tend
to generate two types of artifacts: 1) over-smoothing
and 2) ringing. Examples of these artifacts are given in
Fig. 1, where (c) shows over-smoothing and (b) shows
ringing (both generated by BTV [5]).
There are two reasons these artifacts appear

in reconstruction-based constraints. First, the
reconstruction-based constraints [15, 5, 14] are de-
signed so that the constraint strength is equal over the
whole image regardless of their contents (edge, texture,
and smooth region). Therefore, the constraints tend to
generate over-smoothing artifacts in the texture region
while reducing the noise in the smooth region.
Second , the constraints are evaluated only based on

the intensity gradient of the SR image. In other words,
there is no constraint against the intensity-magnitude
relation among nearest neighbor pixels in the SR im-
age. However, the breaking of the magnitude relation
in the SR image directly generates the ringing artifacts
around the edge region. In this sense, the ringing arti-
facts cannot be reduced by the existing reconstruction-
based constraints.
To address the issue with the over-smoothing arti-
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Figure 2. The overview of the proposed method.

fact, Cho et al. [2] recently presented an edge-and-
texture-preserving constraint based on the constant-
aware image prior. The constraint can preserve the
texture pattern without over-smoothing artifacts by
adaptively determining the constraint strength based
on contents (edge, texture, and smooth region). How-
ever, the constraint tends to generate ringing arti-
facts because the constraint is basically designed based
on the intensity gradient, i.e., without the intensity-
magnitude relation.

In this paper, we propose a single image SR based on
a content-aware constraint and an intensity-order con-
straint. The proposed method generates an SR image
by minimizing an energy that consists of a data term,
a content-aware constraint, and an intensity-order con-
straint. Experimental results show that the proposed
method outperforms existing reconstruction-based SR
methods in terms of PSNR and SSIM.

2 Proposed method

The overview of the proposed method is shown in
Fig. 2. First, it generates the guidance image that
is used for the intensity-order constraint by means of
a guided filter [10]. Next, it computes eigenvalues of
the Harris matrix for each pixel as the feature vector
for the content-aware constraint. The content-aware
constraint is evaluated based on a feature vector com-
puted from the input image and a feature vector from
the training images. Finally, the SR image is generated
by minimizing the energy function.

In the proposed method, the energy function E(x)
consists of the data term, the content-aware constraint
and the intensity-order constraint as

E(x) = ED(x) + λ1EC(x) + λ2EI(x), (1)

where x is the vectorized intensity of the SR image and
λ1 and λ2 are the parameters to control the strength
of the second and third terms, respectively. The first,
second, and third terms are the data term, the content-
aware constraint, and the intensity-order constraint,
respectively.

The data term ED(x) penalizes the intensity residual
between the input image and the down-sampled and
blurred SR image as

ED(x) =
∑
i

[∑
j,k

DijBjkxk − yi

]
, (2)

where i, j, and k are the pixel index, Dij and Bjk rep-
resent the down sampling and blur, and xi and yi are
the intensity of the SR image and the input image at
the i-th pixel.

Figure 3. The perpendicular direction θi.

Figure 4. The outline of the smoothed step func-
tion g.

Content-aware constraint: To reduce the over-
smoothing artifacts in the texture region while reduc-
ing the noise in the smooth region, we introduce the
content-aware constraint EC(x) as

EC(x) =
∑
i,j

J(ξ1,i, ξ2,i, θi,j)|xi − xj |−β , (3)

where J(ξ1,i, ξ2,i, θi,j) is the coefficient that controls
the constraint strength for the intensity difference be-
tween the i-th and j-th pixels, and β is the exponent
index. Here, ξ1,i and ξ2,i are the eigenvalues of the
Harris matrix evaluated as feature vectors at i-th pixel,
and θi,j is the angle between the perpendicular direc-
tion of the intensity gradient and the line connecting
i-th and j-th pixels, as shown in Fig. 3. In the proposed
method, the proposed image prior for the content-
aware constraints is modeled by hyper-Laplacian dis-
tribution with the exponent β as

p(δx|ξ1, ξ2, θ) ∝ exp
[
− J(ξ1, ξ2, θ)|δx|−β

]
, (4)

where δx is the intensity difference between near-
est neighbor pixels, e.g., |xi − xj |. To evaluate
the coefficient J(ξ1, ξ2, θ) using the training images,
we first compute the eigenvalues of the Harris ma-
trix for each pixel in each training image. Then,
the coefficient J(ξ1, ξ2, θ) is estimated by minimiz-
ing the mean squared error of logarithmic probability
ln p(δx|ξ1, ξ2, θ). Note that the existing method [2] de-
signs the image prior only using the variance and the
fourth order moment of the absolute intensity gradi-
ent, i.e., without using the intensity gradient direction.
In contrast, the proposed method evaluates the image
prior based on not only the gradient intensity expressed
by ξ1 and ξ2 but also the intensity gradient direction
represented by the perpendicular direction θ. By us-
ing the perpendicular direction θ, we can preserve the
sharpness of the strong edge along the normal direc-
tion while reducing the noise on the strong edge along
the perpendicular direction.

Intensity-order constraint: To reduce the ringing ar-
tifact, the proposed method introduces the intensity-
order constraint so that the intensity-magnitude re-
lation between nearest neighbor pixels is preserved.
The intensity-order constraint EI(x) penalizes the
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Figure 5. The effectiveness of the intensity-order
constraint.

intensity-magnitude relation difference between the
nearest neighbor pixels as

EI(x) =
∑
i,j

ϕi

[
g(xi − xj)− g(xguide

i − xguide
j )

]2
, (5)

where xguide
i is the guidance image intensity at the

i-th pixel, g(·) is the smoothed step function whose
outline is shown in Fig.4, and ϕi is the weight of the
intensity-order constraint at the i-th pixel. In the pro-
posed method, the weight ϕi is a binary mask that
only 1 around the strong edge region. The function
g(·) represents the intensity-magnitude relation using
sigmoid function with gain α as

g(x) = σ(x− η;α) + σ(x+ η;α), (6)

where η controls the width of the step size.
The effectiveness of the intensity-order constraint is

shown in Fig. 5, where the SR image intensity and the
guidance image intensity are shown as solid and bro-
ken lines, respectively. Note that there is a ringing
artifact between the i-th and j-th pixels in the SR im-
age. As shown, the output of the smoothed step func-
tion g(·) for the SR image (i.e., g(xi − xj)) is 2, while

that for the guidance image (i.e., g(xguide
i − xguide

j )) is
0. Therefore, in this case, the proposed intensity-order
constraint EI(x) penalizes the SR image that includes
the ringing artifacts.

3 Experiments

In order to evaluate the performance of the pro-
posed method, we performed experiments on natural
images [12, 13]. Images from the BSD dataset [13] were
used as the training images to evaluate the content-
aware constraint. All experiments were performed on
a PC with a 3.33 GHz CPU and 92.0 GB RAM. We set
the parameters as λ1 = 3, λ2 = 0.1, β = 2/3, η = 8,
and α = 0.5. These parameters were empirically de-
termined using training images that were not used for
the following evaluation.

We first evaluated the performance of the proposed
method and existing reconstruction-based SR methods
including Tikhonov-based constraint [15], TV [14], and
BTV [5]. Parameters for the existing methods were
empirically determined using the training images. We
used 24 images from the Kodak image dataset [12] as
the test images. In the experiments, the test images
were generated by blurring the ground truth image
with Gaussian kernel (PSF width: 1.0 [pix]) and by
down-sampling the blurred image with Gaussian white
noise (40 [dB]). The magnification rate was set to two.

Examples of the results obtained by the proposed
and existing methods are given in Fig. 6. As shown in

(a) Input (b) Proposed

(c) Input (close-up) (e) Tikhonov [15] (f) TV [14]

(g) BTV [5] (h) Proposed (i) ground truth

Figure 6. Result by proposed and existing
method. (×2)

Figure 7. Edge profile of the proposed and the
existing methods. (blue line in Fig. 6 (i))

Table 1. Mean of PSNR and SSIM.

Tikhonov TV BTV Proposed
PSNR 28.4 29.2 29.3 29.6
SSIM 0.913 0.953 0.954 0.955

Fig. 6 (e), the Tikhonov-based constraint generated se-
vere ringing artifacts around the strong edge between
the door and the wall. Over-smoothing artifacts were
also generated by the existing methods [15, 14, 5] in the
texture region of the stone wall, as shown in Fig. 6 (e),
(f), and (g). In contrast, Fig. 6 (h) shows that the pro-
posed method can generate the SR image without the
ringing while preserving the texture. To evaluate the
effectiveness of the proposed constraints more specifi-
cally, the edge profile around the reconstructed strong
edge (the blue line in Fig. 6 (i)) by the proposed and
existing methods are shown in Fig. 7. We found that
the existing methods [15, 5] generated ringing artifacts
around the edge, whereas the proposed method, by
using the intensity-order constraint, could effectively
reduce the ringing artifacts.

Next, to evaluate the performance of the proposed
and existing methods quantitatively, we measured
peak signal-to-noise ratio (PSNR) and structural sim-
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(a) Input (b) Proposed

(c) Input (close-up) (d) Freedman [7] (e) Glasner [9]

(f) Shan [17] (g) Fattal [6] (h) Proposed

Figure 8. Result by proposed and existing
method. (×4)

ilarity (SSIM) [21] in the SR images. The average
PSNR and SSIM of the 24 test images (shown in Table
1) reveal that the proposed method outperformed the
existing methods in terms of both PSNR and SSIM.

Finally, we evaluated other SISR methods, with ex-
amples shown in Fig. 8. Here, the magnification rate is
four. As shown in Fig. 8 (e) and (g), the jaggy artifacts
are generated in the edge region by Fattal’s and Glas-
ner’s methods [9, 6]. The characters are also blurred
by Shan’s and Freedman’s methods [7, 17], as shown
in Fig. 8 (d) and (f). In contrast, Fig. 8 (h) shows
that the proposed method can generate the SR image
without the jaggy or blur artifacts.

4 Conclusion

We proposed a single image SR method based
on the content-aware constraint and the intensity-
order constraint. The proposed method generates
an SR image by minimizing the energy that consists
of the data term, the content-aware constraint, and
the intensity-order constraint. Experimental results
showed that the proposed method outperformed ex-
isting reconstruction-based SR methods with standard
constraints in terms of PSNR and SSIM.
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