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Abstract

Hand-crafted features are widely used in object
recognition field. Recent advances in convolutional
neural networks allow to extract features automatically
and produce better results in object recognition with-
out considering about feature design. Although RGB
and depth data are used in some convolutional net-
work based approaches, volumetric information hidden
in depth data is not fully utilized. We present a 3D
convolutional neural network based approach to utilize
volumetric information extracted from depth data. Us-
ing a single depth image, a view-based incomplete 3D
model is constructed. Although this method does not
provide enough information to build a complete 3D
model, it is still useful to recognize objects. To the
best of our knowledge, the proposed approach is the
first volumetric study on the Washington RGB-D Ob-
ject Dataset and achieves results as competitive as the
state-of-the-art works.

1 Introduction

Object recognition is one of the most fundamental
problems in machine vision. Recognition systems de-
ployed for particular entities, e.g. fingerprint, iris, opti-
cal character, license plate, and traffic sign, widely used
in daily applications but recognising various types of
objects is still a difficult task. Especially in the field of
robotics, this kind of intelligence is needed to increase
robot’s interaction with the real world. Object recog-
nition is a challenging task because (i) the same object
class may contain many different instance types (intra-
class variation) (ii) different object classes may form
similar instance types (iii) the general challenges from
the nature of the problem exist, such as environmental
illumination challenges, viewpoint and scale variations,
noise and distortions in the images.

Until recently, object recognition tasks were based
on hand-crafted feature extraction. However, this kind
of approach requires field expertise and also lacks the
generic models that can be reused. The new trend
in Convolutional Neural Networks (CNNs) [1] presents
the ability of automatic feature learning and increases
efficiency of recognition systems significantly. Since
depth information provides relatively invariant infor-
mation on color, illumination, and viewpoint changes,
there has been increasing interest in object recognition
using depth data after the invention of low-cost RGB-D
sensors such as the Microsoft Kinect. In most of ex-
isting research efforts, depth data is used as an extra
channel in addition to the RGB channels (e.g. [2, 3, 4]).
However, the characteristics of RGB and depth images
are different. While RGB data provides color and rich

texture information, depth data has better ability of
representing 3D structures of objects. Therefore, in-
stead of using depth data as an additional channel, it
would be better to use depth data to extract geometric
structures of objects.

In this work, we propose a 3D CNN based approach
to exploit 3D geometrical cues of objects using depth
data. Two types of volumetric representations are con-
structed from depth images and objects are recognized
using only depth data. Unlike the studies that use a
complete 3D representation of objects [5, 6], the pro-
posed approach is based on view-based incomplete 3D
representations to recognize objects. Since these volu-
metric representations are constructed from only depth
images, the approach can easily be used with an RGB-
D sensor. An object can be recognized using only a sin-
gle depth image without having a complete 3D model
of the object. In summary, our contributions in this pa-
per are: (i) We introduce two elegant and effective vol-
umetric representations. (ii) We experimentally show
that 3D CNNs are ingenious enough to learn objects
from incomplete 3D object representations. (iii) To
the best of our knowledge, this work is the first volu-
metric representation on the commonly used Washing-
ton RGB-D Object Dataset [7] and outperforms most
state-of-the-art algorithms on this dataset.

2 Related Work

With the advent of affordable RGB-D sensors, an
increasing number of papers have focused on object
recognition using depth images [2, 3, 4, 5, 6, 7, 8, 9, 10].
Most of these approaches use depth data as an addi-
tional channel to the RGB channels [2, 3, 4, 7, 8, 9, 10],
which are considered as 2.5D recognition approaches.
Socher et al. [2] propose a convolutional-recursive neu-
ral network model (CNN-RNN) which learns color and
depth features separately and then combines them for
the softmax classifier. In [3], depth kernel descriptors
are proposed to capture size, shape, edges, pixel orien-
tations in a unified way. Hierarchical kernel descriptors
[4] extend [3] in a layer-wise fashion. Both [4] and [3]
are based on hand-crafted feature extraction. Cheng
et al. [8] propose a semi-supervised learning method
in which they use CNN-RNN model [2] to construct
RGB and depth features along with a co-training al-
gorithm to make use of unlabeled data. In [9], the
authors extend this work by considering grayscale im-
ages and surface normals in addition to the RGB and
depth images. They also adapt CNN-RNN model [2]
for arbitrary image sizes by replacing the first step of
CNN-RNN with a spatial pyramid pooling layer. In
[10], a non-automatic subset based patch extraction
for convolutional feature learning is presented. In [11],
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sparse coding is used to learn hierarchical feature rep-
resentations of RGB-D data in an unsupervised way.
More recently, an interesting algorithm is proposed by
Zaki et al. [12]. The authors embed depth data and
point cloud data into the RGB domain to allow knowl-
edge transfer from a pre-trained CNN model. Thus,
their method is taking advantage of large annotated
datasets like ImageNet [13]. They also use hypercube
pyramids to encode locally-activated features in the
earlier CNN layers.

Volumetric approaches have started with the intro-
duction of the 3D ShapeNets [5] which represents 3D
shapes as a probability distribution of binary voxels.
Maturana et al. [6] take ShapeNets one step further
by reducing the number of model parameters up to 12x
and increasing the classification accuracy significantly.
Inspired by these works, we present a 3D CNN model
on the Washington RGB-D Object Dataset [7] which
is one of the most used benchmarks. Both [5] and [6]
are built on using the full sphere of viewpoints over an
object whereas our approach is based on single view of
an object. Furthermore, unlike our work, they repre-
sent 3D models as a probabilistic approach of spatial
occupancy on voxel grid maps. While ShapeNets [5]
and VoxNet [6] augment the dataset by copying each
input instance rotated around z axis (i.e. 12 poses per
model for ShapeNets and 12 or 18 poses per model for
VoxNet ) to acquire complete 3D object models, our
method is trained on view-based incomplete models
but still successful results are achieved.

3 Method

The proposed method starts with a preprocessing
step to increase the data quality. The input of our
pipeline is a raw depth image. The raw depth data ob-
tained with the Kinect is noisy and has missing depth
values (holes) due to reasons such as reflections, trans-
parency of surfaces, etc [14]. We apply an iterative pro-
cess to fill out the missing zero values with the mean of
5 × 5 pixel neighbourhood of the target value. After
converting depth image to the point cloud data, we ap-
ply the denoising method in [15] to remove noise from
the point cloud. The overview of the proposed method
is illustrated in Fig. 1.

3.1 Volumetric Representation

The depth data is generally used as an additional
channel in the literature (e.g. [2, 3]). Since the charac-
teristics of RGB and depth images are different, geo-
metric structure information hidden in depth data may
not be fully utilized with this approach. On the other
hand, volumetric representations have advantages in
CNN architectures such as simplicity, convenience to
convolutional approaches and good representation of
3D geometrical cues. Within this context, we propose
two elegant and effective volumetric representations.
Depth images are converted to point cloud data. Then,
our volumetric representations are constructed based
on projection of point cloud data to 3D matrix space
in which each cell represents a voxel. There is no need
to resize the depth images since the projection oper-
ation does not require equal image sizes. Therefore,
the use of volumetric representations prevents poten-

tial performance degradation by cropping and warping
input images.

3.1.1 Volumetric Binary Grid

Binary grid represents the existence of a surface
point in a voxel. 1 indicates the presence of a point
whereas 0 specifies the absence. For a given m × 3
point cloud data where m denotes the number of
points; X = {x1 , x2 , ..., xm}, Y = {y1 , y2 , ..., ym}, and
Z = {z1 , z2 , ..., zm} are the column vectors of all the
values of x -axis, y-axis and z -axis respectively. Then
the transformation is done as follows:

X
′

=

(
X − xmin

(xmax − xmin) + ε

)
(lmax − lmin) + lmin

Y
′

=

(
Y − ymin

(ymax − ymin) + ε

)
(lmax − lmin) + lmin

Z
′

=

(
Z − zmin

(zmax − zmin) + ε

)
(lmax − lmin) + lmin

(1)

Where X
′
, Y

′
, Z

′
are the projection vectors corre-

sponding to X , Y , Z point cloud data; (xmax , xmin),
(ymax , ymin) and (zmax , zmin) are the maximum and
minimum pair values in X , Y , Z vectors respectively;
lmax and lmin are maximum and minimum projection
values. In our case, lmax = 30 and lmin = 1. The small
constant value ε ≈ 0 in denominator is to prevent di-
vision by zero in the case when max and min values
are equal. Then, the values in X

′
, Y

′
, Z

′
vectors are

rounded to closest integer value in order to obtain dis-
crete values between lmin and lmax . Finally, for a given
(x ′

k , y
′
k , z

′
k ) voxel in the grid, volumetric binary value is

assigned as follows:

(x′k, y
′
k, z

′
k) =

{
1, if x′k ∈ X ′, y′k ∈ Y ′, z′k ∈ Z ′

0, otherwise
(2)

Where k = {1 , 2 , ...,m} and since the values
are scaled and rounded, x ′

k = {lmin , ..., lmax},
y ′
k = {lmin , ..., lmax}, z ′

k = {lmin , ..., lmax}. Last
to mention, as shown in the equations (1), the column
vectors X , Y and Z are calculated separately within
themselves. This allows voxels to maintain the relative
positions to each other.

3.1.2 Volumetric Intensity Grid

In binary grids, scaled point cloud values are pro-
jected into voxel points to represent whether there is
a surface point in each of voxels. However, in this
representation, many point cloud values might be rep-
resented with the same voxel value. As long as a point
cloud value is projected into a voxel, its value is al-
ways 1 no matter how many point cloud values are
represented by the voxel. Instead of keeping trace of
presence/absence of a point in a voxel, the objective
of our volumetric intensity grid is to keep how many
points a voxel represents. Each voxel has an intensity
value according to the number of point cloud values
projected into that voxel. To do this, the voxel value
is incremented by one for each projected point cloud
value in the equation (2).
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Figure 1. An overview of our model. The input depth image is converted to a point cloud after passing
through the first preprocessing step. The volumetric representation is obtained after denosing the point
cloud. The convolutional layers have 32 filters with 5 × 5 × 5 and 3 × 3 × 3 sizes followed by a leaky
ReLU. The third layer is a pooling layer which downsamples the input volume. The last two layers are
fully-connected layers with 128 and 51 unit numbers respectively.

3.2 3D CNN Model

CNNs trained on large databases such as ImageNet
[13] have broken new ground in visual recognition. Un-
like conventional handcrafted models, deep learning
methods provide reusable models. Recently, VoxNet
[6] presents an effective 3D CNN model in terms of
runtime performance, memory requirements and accu-
racy based on The Lasagne framework [16]. In this
work, the 3D CNN architecture of VoxNet is used for
modelling the constructed volumetric representations.
The CNN architecture is composed of two convolu-
tional layers followed by the leaky ReLU [17], a max
pooling layer after the second convolutional layer and
two fully-connected layers as the last layers. The input
layer accepts 32 × 32 × 32 volumetric data. The con-
volution layers perform 5 × 5 × 5 and 3 × 3 × 3 con-
volutions with stride size 2 and 1 respectively. Each
creates 32 feature maps by convolving the inputs with
32 learned filters. The outputs of both convolutional
layers pass through a leaky ReLU with parameter 0.1.
The max pooling layer downsamples the input volume
by a factor of 2 for each dimension with maximum val-
ues. The fully connected layers have 128 and 51 (num-
ber of classes) unit numbers respectively. Stochastic
Gradient Descent (SGD) is used for minimizing the ob-
jective function with L2 regularization and momentum
optimization forms. There are dropout layers after the
first convolution layer, the pooling layer and the first
FC layer with 0.2, 0.3 and 0.4 parameters respectively.
Originally, VoxNet uses n views of each input to obtain
rotationally invariant volumetric model. Our approach
uses only one view of an object to perform classifica-
tion. Despite this limitation, our approach produces
promising results.

4 Experiments

To test performance of our approach, we use one
of the most commonly used RGB-D benchmarks, the
Washington RGB-D Object Dataset [7]. This dataset
has 300 object instances in 51 object categories. The
dataset contains a total of 207.662 depth images taken
from different view angles and sizes. We evaluate our
method according to two testing scenarios: (i) We use
the approach of volumetric works on ShapeNets [5] and
VoxNet [6], in which 80% of data is used as train-
ing split, the rest 20% is used as testing split. How-
ever, these works use ModelNet dataset [5] while we

Table 1. Category recognition accuracy (%) with
the complete Washington RGB-D Object Dataset
using depth data

Volumetric Grid with Mask without Mask
Binary 89.9 93.2

Intensity 93.0 96.1

use the Washington RGB-D Object Dataset [7]. We
use the entire dataset in this testing scenario. (ii) As
a second scenario, we use the commonly used setup
on the Washington RGB-D Object Dataset in litera-
ture [2, 3, 4, 7, 8, 9, 10, 11, 12]. We sub-sample the
dataset by taking every fifth depth image in order to
have around 41.500 images. Then, we randomly leave
one instance out from each category for testing and
train on the rest of the remaining objects. For this
testing scenario, the experiments are run 10 times and
average results are given. All the tests are performed
on a Tesla K40c GPU.

In the first scenario, we investigate recognition per-
formance using both binary and intensity volumetric
grids. We also conduct experiments in which no seg-
mentation masks are used in the preprocessing step,
showing that our approach is able to deal with the
background clutter. Table 1 shows the results obtained
by the first scenario. We can see that despite the par-
tial 3D shape views, our approach conducts superior
performance. The volumetric intensity grid improves
the results significantly. Instead of considering pres-
ence/absence of a point projected into a voxel, point
intensity in a voxel gives more information for a bet-
ter classification. Another interesting result is that
using segmentation masks negatively affects classifica-
tion performance. We think that this is due to im-
perfections in object masks provided with the dataset.
In the experiments, we realized that some erroneous
masks crop important parts of objects. However, as
it can be seen in Table 1, the proposed method han-
dles the background problems without using masks and
provides superior performance in the presence of back-
ground.

Considering the results in Table 1, we only evalu-
ate the best performing volumetric intensity grid with
background combination for the second testing sce-
nario. Table 2 gives the performance comparison of
our approach with the previous works. Comparing to
Table 1, the decrease in recognition rate is due to test-
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Table 2. Performance comparison of category
recognition on the Washington RGB-D Object
Dataset using depth data

Type Method Accuracy(%)

2.5 D
Kernel SVM [7] 64.7 ± 2.2

HKDES [4] 75.7 ± 2.6
(Hand-crafted) KDES [3] 78.8 ± 2.7

2.5 D

SSL [8] 77.7 ± 1.4
CNN-RNN [2] 78.9 ± 3.8

HMP [11] 81.2 ± 2.3
Subset-RNN [10] 81.8 ± 2.6

CNN-SPM-RNN [9] 83.6 ± 2.3
Hypercube [12] 85.0 ± 2.1

Volumetric This work 82.0 ± 2.3

ing on unseen category instances as well as reducing
the dataset size by 1/5 . Because the key to success of
multi-layered convolutional deep architectures comes
from using large datasets. Nonetheless, our approach
outperforms all methods except that of Zaki et al. [12]
and Cheng et al. [9]. Zaki et al. [12] achieved their
success with the help of additional use of outputs of
earlier layers in CNN as described in Section 2. They
also make use of pre-trained CNNs in depth data to
take advantage of large annotated datasets like Ima-
geNet. Besides that, they also take advantage of dif-
ferent data modalities among RGB images, depth maps
and point clouds to capture object features. Their sep-
arate experiment using depth images and point clouds
in isolation gives 79.4% and 70.3% accuracies respec-
tively. Similarly, Cheng et al. [9] make use of surface
normals along with depth data as in [11].

5 Conclusion

We have presented a 3D convolutional object recog-
nition approach based on two volumetric representa-
tions using depth maps. Although depth maps do not
give enough information to build a complete 3D model
of objects, the constructed view-based incomplete 3D
model is still useful to recognize objects. Our exper-
iments show that the proposed model has achieved
higher accuracy than many state-of-the-art approaches
on the commonly used Washington RGB-D Object
Dataset. To the best of our knowledge, the proposed
model is the first volumetric approach on this dataset.

We have demonstrated that 3D CNNs on vol-
umetric representations make it possible to learn
rich 3D structural information of objects. We be-
lieve this work opens up possibilities for learning
rich 3D geometrical features. We plan to explore
other possibilities of volumetric learning in the fu-
ture.
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