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Abstract

This paper proposes a simple automatic 3D ear recon-
struction method using a video selfie while having no
knowledge about the scene. First we use the EXIF data
stored within the images to estimate the intrinsic ma-
trix. Then, standard structure from motion techniques
are applied to obtain a reconstruction for every couple
of images which will be merged into one reconstruction
that represents the whole scene using an original proce-
dure. Finally, the quasi-dense model is obtained by us-
ing the ASIFT and ZNCC descriptors. Our approach
is simple to implement and only requires the use of
a smart-phone camera. Also, the experimental results
showed that this approach is very promising compared
to the other methods used to solve this problem.

1 Introduction

Human ear 3D structure from motion (SFM) piqued in-
terest in recent years, its importance in the domain of
recognition systems and 3D modeling is beyond ques-
tioning. Anika Pflug et al. showed [1] that the three di-
mensional ear models could be the solution to the cur-
rent challenges in 2D ear recognition, especially prob-
lems concerning pose variation and variation in camera
position. There is also a new research utilizing 3D ear
models for making a 3D sound that gives a better sen-
sation of sound direction and immersion, this new up-
coming technology is based on an adaptive filter that
takes the human morphology into consideration, hence
the use of 3D ear models.

For the last decade, researchers have been working on
ear-based identification technology using a variety of
approaches. Steven Cadavid et al. [2] were one of
first group of people who attempted to establish hu-
man recognition system based on 3D ear reconstruc-
tion . He extracted different video frames, then he
applied a modified structure from shading technique
on every frame independently to get multiple 3D mod-
els. Among these models, he then chose the one which
shares the greatest similarity to the rest of 3D models
set. The downside on this approach is its vulnerability
to luminosity variation even to a small degree.

Heng liu et al. tried a different aproach [3], their goal
was to come up with an automatic multi-view 3D ear
reconstruction method using a device that controls pre-
cisely the position and the angle of the camera while
allowing them to keep a constant brightness as well.
Firstly they used harris corner detector [4] to extract
ear feature points and RANSAC to filter the outliers,
but the results proved that changes must be made
since they only obtained few matching points; so they
proposed a semiautomatic way to select the matching
points among the photos which allowed them to obtain
between 300 and 600 vertices.

Other methods were invented to solve this problem, hui
zeng et.al. [5] used binocular stereo vision to obtain 3D
ear points, his method is based on finding dense cor-
respondence points by applying SIFT followed by ap-

plying a match propagation algorithm combined with
the knowledge of the epipolar geometry constraints.

In this work we try to obtain a 3D reconstruction of
the ear while having zero knowledge about the scene.
Unlike the previous works in this field where they use
systems that give them control over the brightness or
the knowledge of the camera position and/or angle, we
propose an approach based on a standard smart-phone
camera that gives a dense reconstruction of the ear and
which can be used by any individual.

2 Estimating the intrinsic parameters

In our experiments we used a smart-phone camera with
a standard CMOS image sensor but these results could
be obtained for any other kind of camera. The inten-
tion of this work is to automatize the whole procedure
to obtain the 3D model, so we’re going to use a simple
autonomous method.

In order to find the focal length we used the EXIF
information provided within the photo:

fx[pixels] = ImgW [pixels] ∗ Fl[mm]

CSW [mm]

ImgW , Fl and CSW refer to the image width in pixels,
Focal length and camera sensor width in millimeters.
Also, there is an alternative to this formula that can be
used, since most of modern cameras nowadays provide
the equivalent to the focal length for a 35 millimeters

film, one can substitute
Fl[mm]

CSW [mm]
by

F35mm

36
.

3 Detecting the ear

Before applying any method of searching for matches,
we must restrict the area of the search in order to pre-
vent finding matches at infinity. For this task we used a
Viola Jones detector provided by [6] where he uses 5000
positive images and 15000 negative images to train his
detector.

4 Feature extraction and matching

There exist a dozen feature extracting methods, SIFT
is one of the most known and the most used techniques
for this purpose. In our work we used a variant of the
SIFT method called ASIFT [7] which proved to be
more robust than the original one, and it gives more
matching points, which is extremely useful especially
in our case since human ears don’t usually provide a
lot of texture information.

5 3D reconstruction

The main two methods to obtain a sparse 3D recon-
struction of a scene from multiple images are the fol-
lowing:
-Using the SFM techniques on two images (three in
case you’re using the trifocal tensor) then add the rest
of the views one by one.
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Figure 1: ASIFT results on two consecutive frames, 332
point correspondences have been found .

-Using the SFM techniques on pairs of images (triplets
in case of trifocal tensor) to get multiple 3D recon-
structions, then merge all into one 3D reconstruction.

Each one of these methods has it ups and downs, The
first one is very dependent of the initial 3D Recon-
struction and the second method is more computation-
ally expensive. Though we select the latter because
we prefer robustness over computation speed; in ei-
ther method, going for the trifocal tensor brings more
stability to the system , but we choose to use the fun-
damental matrix for the sake of simplicity.
First and foremost, we’re going to robustly estimate
the fundamental matrix for every consecutive couple
of images using the RANSAC technique which will al-
low us to get rid of the outliers eventually.
Then we will use Hartley’s method which he described
in his famous book [8] chapter 9 where he went over
the method to calculate the camera matrices Pi and
Pi+1 using the fundamental matrix and the way to
choose one of the four possible solutions for the ro-
tation matrix R and the translation vector t. He then
uses triangulation on these matrices to obtain the 3D
points (see chapter 12). it should be noticed in this
regard that among the four solutions we should choose
the one that results in all the points being in front of
the two cameras. But it does not necessarily provide
a unique solution. Sometimes one may end up with
two or more solutions with the same number of points
in front of the cameras. This may happen when the
RANSAC fails to find the accurate fundamental ma-
trix or for other reasons. In this case it is preferable
to discard one of the two current views and replace it
with the next one.

So far we should have the reconstructed 3D points for
each point correspondence xi ↔ xi+1 in two consecu-
tive views:

αixi = PiXαi+1xi+1 = Pi+1X

Where αi and αi+1 are non-zero scale factors.

6 Merging 3D reconstructions

By now we should have 3D reconstructed points for ev-
ery pair of consecutive images. the question that arises
is how to merge all of these into one 3D reconstruction.

Modern work on multi-view structure from motion us-
ing global methods [9] and [10] attempts to estimate
the global rotation and the motion before calculating
the position of the 3D points, they also try to match
each image multiple times with different images which
is computationally expensive. This is considered as an
overkill for a small set of images (from 3 to 8 images),

so we developed a simple and easy method to imple-
ment for this kind of problem. We propose a novel
algorithm that estimates the rotation, translation and
the 3D points position at the same time.

In this section we are going to describe the original
method proposed to merge two sets of camera views,
these sets may contain more then just two views each;
obviously we need to have at least one camera in com-
mon between these two sets.

Let ΓA and ΓB be two sets of camera matrices, each
set corresponding to views which either have been si-
multaneously used to reconstruct 3D points, or all re-
sult from a previous merging; in either case, each set
includes matrices expressed in the same world coordi-
nates:

ΓA = {PAk}k∈SA

ΓB = {PBl}l∈SB

Where SA ⊂ N and SB ⊂ N.
Also let ΛA and ΛB be two sets of the 3D points asso-
ciated with ΓA and ΓB .

We consider an i ∈ N so that PAi ∈ ΓA and PBi ∈ ΓB ,
meaning that PAi and PBi represent the same camera
view in the two sets.

The next step would be transforming all the camera
matrices that exist within ΓB so that they become in
the same world coordinates as the ones in the set ΓA,
and do the same for the 3D points in ΛB . Knowing
that the scene was static during the time the photos
were taken, we are sure that there exists an invertible
transformation matrix T that satisfies: ∀XB ∈ ΛB ,
T−1XB is expressed in ΛA world coordinates. This
transformation is composed of a rotation, a translation
and a scale.

We can notice that applying this transformation
doesn’t change the projection of the 3D point, x =
PBiXB = (PBiT)(T−1XB) = PAiXA

We know from before that every camera matrix P
should be written as P = [R|t] where R is the ro-
tation matrix and t is the translation vector; all rota-
tion matrices by definition satisfy R−1 = RT . Now
let’s go back to our camera view i, knowing that
PAi = [RAi|tAi] and PBi = [RBi|tBi] one can eas-
ily verify that:

PBi

 RT
BiRAi RT

BitAi − sRT
BitBi

0 0 0 s

 = PAi

This relation holds true ∀s ∈ R+∗ which represents the
global scale. In order to estimate this scale, we pro-
pose to search for a common 3D point that has been
reconstructed in both ΛA and ΛB while visible in the
common view i noted XAi

c and XBi
c , then the scale is

approximately equal to s = d(XAi
c ,CAi)/d(XBi

c ,CBi)
where d(XAi

c ,CAi) is the distance between the 3D
point and the center of the common camera i.

Now that we found our matrix T, we can use it to
transform every camera matrix and 3D point that be-
longs to ΛB . With a few index changing we should
have our merged set ready, but first we have to verify
that T is indeed invertible. We notice that det(T) =
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sdet(RT
BiRAi), and we know that det(RT

Bi) = 1 and
det(RAi) = 1, thus det(T) = s .

Using this technique allows to reconstruct the 3D
sparse model of the whole scene eventually by merging
the model obtained from views 1 and 2 with the one
obtained from 2 and 3, which will result in a model con-
taining the views from cameras 1,2 and 3, then merge
this one with the 3D model coming from views 3 and
4; and so on. Again, we are suggesting a very basic
policy to merge the 3D models.

The results of merging two 3D models is rarely satisfy-
ing, most of the time merging will tend to produce two
separated clusters of 3D points (an example is shown
in figure 2). This is why it is indisputably necessary to
apply bundle adjustment.

(a) (b)
Figure 2: The reconstructed scene from frame 1,2 and 3
after merging two reconstructions, in dark blue is the re-
constructed 3D points from frame 1 and 2, in cyan from
frame 2 and 3.(a) represent the reconstruction right after
the merging while (b) represent the results after optimizing
using the Levenberg-Marquardt algorithm.

7 Bundle adjustment

Before going forth, it’s in our interest to refine our
3D points coordinate. this step is crucial, and keep
merging 3D reconstructions without optimizing them
will only make the error grow exponentially.

Firstly, we will define the reprojection error that should
be minimized. Let xij be the features detected on a
certain frame, and Xi the 3D reconstructed points of
this feature with respect to the projection matrix Pj.
Let x̂ij be the reprojection of the point i on image j:

x̂ij = PjXi

That has been said, the reprojection error that needs
to be minimized is :

n∑
i=0

m∑
j=0

d(x̂ij,xij)
2

Where d is the euclidean distance.

The question arises of what are the parameters that we
are going to minimize and what method we are going to
use, also there is the problem of avoiding local minima.
Several approaches have been proposed to solve this
problem, B Triggsc et al. [11] went in depth on a variety
of methods starting by problem parameterisation, error
modeling and the different implementation strategies,
We decided to implement one of the simplest forms of
bundle adjustment: a first order Levenberg-Marquardt
algorithm, MaNolis I. [12] wrote a brief Description of
this technique.

The parameters that we need to optimize are: Xi, the
rotation Rj and the translation tj of every projection
camera Pj. The changing of these parameters is going
to hopefully produce a better reprojection error, but
changing the rotation matrix might be tricky, because
we are not sure that the optimized value of R is going
to keep its rotation matrix properties, So we decided to
compute Euler angles αj , βj and γj from the rotation
matrix Rj, and optimize these 3 angles, then compute
the rotation matrix from the optimized angles, this
solution is also much less computationally expensive.

We described in the section above the method used to
implement bundle adjustment, so the key solution is to
use bundle adjustment after every time we merge two
3D reconstruction, after that we will also remove the
points that kept high reprojection error even after ap-
plying bundle adjustment, we choose an arbitrary value
of 10 pixels as a ceiling to filter all the ill reprojected
points. Finally we will rerun bundle adjustment. Also
it’s worth noting that there exists an open source algo-
rithm developed by Google called Ceres solver which
is widely used for bundle adjustment purposes.

8 3D quasi-dense reconstruction
Our aim in this section is to obtain a dense reconstruc-
tion from the sparse matches between our pairs of im-
ages, for this task, we choose to use the match propa-
gation algorithm, it will allows us to search for a large
number of matching points between our images, and
since we already know all the information regarding
the scene we will just re-triangulate these new matches
to obtain the dense 3D reconstructed points.

M. Lhuillier et al. [13] proposed algorithm that utilizes
the ZNCC descriptor (zero-mean Normalized Cross-
Correlation) with cross-consistency check, the prop-
agation is initiated by a set of matches{(x,x′)}j be-
tween the images I and I ′, these initial matches called
seed points.

The ZNCC descriptor of the pair (x,x′) is defined as:∑
i

(
I(x + i)− µI(x)

)(
I ′(x′ + i)− µI′(x′)

)
√∑

i

(
I(x + i)− µI(x)

)2∑
i

(
I ′(x′ + i)− µI′(x′)

)2
where x + i is index of the neighbor pixel in a given
windows around the center x, and µI(x) is the mean
value on that window.

The propagation algorithm follows 3 simple steps:

• search for the best pair (x,x′) in terms of ZNCC
score, and remove it from the list of seed points

• search for pairs (u,u′) in the neighboring window
of (x,x′) that exceeds a ZNCC threshold and also
satisfy a certain number of constraints.

• store these pairs in the disparity map and in the
list of seed points

This process is repeated until the list of seeds is empty.
The neighboring window of (x,x′) is defined as:

N (x,x′) = {(u,u′)|u ∈ N (x),u′ ∈ N (x′)}

where

N (x) = {u|(u− x) ∈ [−N,N ]2}
N (x′) = {u′|(u′ − x′) ∈ [−N,N ]2}
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Figure 3: An example of 3D ear reconstruction result using
5 images, number of vertices 93114

Also there is a number of constraints that will be
applied to prevent the algorithm from finding false
matches. The first one, called the disparity constraint,
which will be used to insure that the transformation
vector from the seed point to the new candidate has
the same direction in both images, so a seed point that
satisfies the disparity constraint is defined as:

{(u,u′)|u ∈ N (x),u′ ∈ N (x′),

||(u′ − x′)− (u− x)||∞ ≤ ε}

furthermore, since we already know the fundamental
matrix, we can check if a new candidate (u,u′) satisfies
the epipolar constraint, which means that u belongs to
the epipolar line of u′ and vice versa.
There are also other constraints that can be implied
to improve the dense matching results or prevent the
propagation into too uniform areas.

Overall, the reason why we choose the ZNCC descrip-
tor for our propagation method is because it is invari-
ant to linear radiometric changes and more tolerant to
noise, but its main problem is that it requires little to
no change in camera angles while taking the two im-
ages. Juha kannala et al. [14] addresses this issue in
details, he comes up with an extension to the match
propagation algorithm for wide baseline matching.

9 Experimental results
The experiments were run on several sets of photos
taken by a smart-phone camera with a resolution of
3264x183. We found out that 5 photos are usually
enough to produce the desired results. The whole pro-
cess takes from 10 to 15 min in average to produce
the quasi-dense reconstruction ( there is plenty room
for optimisation). Our method can produce results of
reconstructions that vary from 30 000 to 100 000 ver-
tices, which is much denser compared to the methods
proposed by [3] and [5]. Table 1 shows the comparison
of different methods.

Table 1: Comparison between different methods

Methods

Range Structure Multi- Hui’s Our
Scan Light view method method

Vertices
7000 2000 300 2000 30000
9000 4000 600 3000 90000

The downside of this method is that sometimes it
fails to merge effectively the different reconstructions,
which becomes a problem for bundle adjustment, due
to its huge dependency on a good initialization, and
this is often a result of a the lack of correspondences
between images.

10 Conclusion

We have presented an automatic method for 3D ear re-
construction based on a video taken by a smart phone
camera. Compared to other methods, ours is much
simpler to implement and has better results in terms of
number of vertices. But still there is place for improve-
ment, especially in choosing the right photos. Also one
can utilize the cell phone gyroscope and accelerometer
to estimate the camera pose and its rotation.

References

[1] A. Pflug and C. Busch, “Ear biometrics: a survey
of detection, feature extraction and recognition meth-
ods,” IET biometrics, vol. 1, no. 2, pp. 114–129, 2012.

[2] S. Cadavid and M. Abdel-Mottaleb, “3-D ear modeling
and recognition from video sequences using shape from
shading,” IEEE Transactions on Information Foren-
sics and Security, vol. 3, no. 4, pp. 709–718, 2008.

[3] H. Liu and J. Yan, “Multi-view Ear Shape Feature
Extraction and Reconstruction.” IEEE, Dec. 2007,
pp. 652–658.

[4] C. Harris and M. Stephens, “A combined corner and
edge detector.” in Alvey vision conference, vol. 15.
Citeseer, 1988, p. 50.

[5] H. Zeng, Z.-C. Mu, K. Wang, and C. Sun, “Auto-
matic 3d ear reconstruction based on binocular stereo
vision,” in Systems, Man and Cybernetics, 2009. SMC
2009. IEEE International Conference on. IEEE, 2009,
pp. 5205–5208.

[6] M. Castrillón Santana, J. L. Navarro, and D. H. Sosa,
“An study on ear detection and its applications to face
detection,” in Conferencia de la Asociacin Espaola
para la Inteligencia Artificial (CAEPIA), La Laguna,
Spain, November 2011.

[7] J.-M. Morel and G. Yu, “Asift: A new framework for
fully affine invariant image comparison,” SIAM Jour-
nal on Imaging Sciences, vol. 2, no. 2, pp. 438–469,
2009.

[8] R. Hartley and A. Zisserman, “Multiple view geometry
in computer vision,” pp. 257–260, 2003.

[9] P. Moulon, P. Monasse, and R. Marlet, “Global fusion
of relative motions for robust, accurate and scalable
structure from motion,” in Proceedings of the IEEE
International Conference on Computer Vision, 2013,
pp. 3248–3255.

[10] M. Arie-Nachimson, S. Z. Kovalsky, I. Kemelmacher-
Shlizerman, A. Singer, and R. Basri, “Global motion
estimation from point matches,” in 3D Imaging, Mod-
eling, Processing, Visualization and Transmission (3DIM-
PVT), 2012 Second International Conference on. IEEE,
2012, pp. 81–88.

[11] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W.
Fitzgibbon, “Bundle adjustmenta modern synthesis,”
in International workshop on vision algorithms, ser.
r217. Springer, 1999, pp. 298–372.

[12] M. I. Lourakis, “A brief description of the Levenberg-
Marquardt algorithm implemented by levmar,” Foun-
dation of Research and Technology, vol. 4, pp. 1–6,
2005.

[13] M. Lhuillier and L. Quan, “Match propagation for
image-based modeling and rendering,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
vol. 24, no. 8, pp. 1140–1146, 2002.

[14] J. Kannala and S. S. Brandt, “Quasi-dense wide base-
line matching using match propagation,” in 2007 IEEE
Conference on Computer Vision and Pattern Recogni-
tion. IEEE, 2007, pp. 1–8.

107


