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Abstract

Detection of cars in airborne images of typical ur-
ban areas has various applications in several domains,
such as surveillance, military and remote sensing. It
is a tremendously-challenging problem, mainly because
of the significant inter-class similarity among various
objects in urban environments. In this paper, a novel
framework is introduced that adopts a sliding-window
approach and it depicts, in a novel way, the local distri-
bution of gradients, colours and texture. A linear sup-
port vector machine classifier is used to differentiate
between descriptors that belong to cars and descriptors
that belong to other objects in a hyperspace of 3838
dimensions. Descriptors are computed over a newly-
proposed adaptive distribution of cells that enables the
use of various rotation-variant image descriptors. The
proposed framework has been evaluated on the Vaihin-
gen dataset and results corroborate its superiority as it
achieves a higher precision for a given recall than the
state of the art.

1 Introduction

In airborne images of low ground sampling distance
(GSD) of few centimetres, small targets, e.g., cars,
shipping containers and aeroplanes, are usually de-
picted by a small number of pixels. Consequently,
there is a significant inter-class similarity among dif-
ferent objects, posing a tremendous challenge to the
task of detecting a particular target of interest. In
this work, cars are considered the small targets of in-
terest and the primary task is to detect and to locate
them in aerial images of complex urban areas using
a powerful image descriptor that is able to distinguish
cars from other non-car objects that possess similar ap-
pearance, such as buildings’ roofs and windows, whilst
being robust to the huge intra-class variability among
cars that stems from the significant differences in their
appearance, as far as various features, such as colour
intensities, size, shape and contours, are concerned.

Original contributions of this work include: (i) novel
design of a method that evaluates the likelihood of win-
dows to contain a target, (ii) new method to estimate
accurately the dominant orientation of windows, (iii)
introduction of adaptive cell distributions over which
various rotation-variant image descriptors can be com-
puted in a new fashion without rotating the original
patch as it is a computationally-expensive process and
it alters the relative distribution of pixels and (iv) new
encoding of the local distribution of complementary
image cues as well as the associated eigenvalues of the
covariance matrices of local descriptors in a robust sin-
gle combined image descriptor.

2 Related Work

Several methodologies have been proposed to detect
cars in airborne imagery. Early works [1], used explicit
models, wherein templates that resemble cues of cars
are designed. Windows are claimed to contain cars,
when their cost of matching to the pre-designed tem-
plates is low. Problems of such models usually arise as
a result of the associated high computational cost.

More recent works utilised implicit models, wherein
image descriptors are engineered to capture different
cues of cars. A pre-trained classifier is then used to
discriminate descriptors that belong to a car. Different
combinations of descriptors were proposed alongside
several classifiers [2–4]. Although acceptable results of
implicit models have been reported, their performance
is significantly affected by the choice of features.

In order to restrict search areas to regions that are
more likely to contain cars, road maps can be exploited
[5]. Whilst this results in high precision rates, it is
based on the prior knowledge of accurate road maps
and on the use of a precise map-projection method.

Unlike flat models, deep models for the detection of
cars can hardly be found in the literature as they re-
quire vast training datasets. Otherwise, models usually
overfit the data. To the best of the authors’ knowledge,
only one work [6] was proposed, wherein a hierarchal
deep model was used. Although high accuracy has
been achieved, their testing dataset did not include
typical complex urban areas.

3 Proposed Framework

Regarding a car in a given aerial image of low GSD,
boundaries that correspond to the edges of its body
and front and rear windscreens are expected to resem-
ble rectilinear structures. These usually form together
a considerable number of crucial points of interest.
Nonetheless, they are incapable of discriminating cars
in urban environments. This is because other non-car
objects possess similar edge maps and they can be eas-
ily misidentified as cars. Based on this observation,
implicit models could be superior to explicit models as
they capture and encode fine details. Therefore, an im-
plicit model and a linear classifier have been adopted.
Three image descriptors are introduced to characterise
the local distribution of gradients, colours and tex-
ture. These cues were chosen among others as cars
possess: (i) almost rectilinear structures, (ii) distinc-
tive colour distribution and (iii) mostly low amount
of texture. The proposed framework comprises four
stages, namely, window evaluation, extraction and en-
coding of features, classification and post-processing
and it adopts a sliding grey-scale fixed-size window of
64× 64 pixels with a stride length of four pixels.
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Figure 1: Processing a sample image using the proposed framework. From left to right: original image, processed
image after evaluating windows, computed descriptors for each candidate window, output of the classification stage
and final detection after post-processing.

(a) 10◦ (b) 30◦ (c) 50◦ (d) 70◦ (e) 90◦ (f) 110◦ (g) 130◦ (h) 150◦ (i) 170◦

Figure 2: Adaptive distribution of cells over which image descriptors are computed at different orientations.

3.1 Window evaluation

In order to reduce search areas and the false-positive
rate, the likelihood of windows to contain cars is inves-
tigated using a novel three-step evaluation process.

First, the variation in the distribution of grey levels
across a window is examined by the computation of
the Manhattan distance rManhattan =

∑32
k=1|hw(k) −

hc(k)| between two 32-bin grey-level histograms hw

and hc, one for the whole window and the other for
the 32 × 32 central square area. If distance is more
than (2048), the window is discarded as this highly
indicates that it belongs to an area with a constant
or a slowly-varying colour distribution, such as empty
roads or vegetation areas.

Second, the texture of the window is examined. Pix-
els of each cell of 4× 4 are divided into two groups ac-
cording to whether the pixel value is larger than the av-
erage value of the cell or smaller. Then, the difference
between the averages of the two groups is calculated.
If the standard deviation of the computed differences is
larger than a pre-defined threshold (32), the detection
window will not be considered for further processing.
The intuition behind this is that a high standard de-
viation indicates a highly-textured surface that cannot
belong to a car.

Third, magnitudes of intensity gradients and their
orientations are calculated. This is done by using
a non-smoothing filter of [-1 0 1] vertically and
horizontally. Then, magnitudes of gradients of cells
of 4 × 4 pixels are accumulated independently in
nine-bin histograms gcell according to their unsigned
orientation, followed by computing the covariance ma-
trix IRgg = IE{ggH} of the L2-normalised responses

gcell ← gcell/
√
‖gcell‖22+ε2 from local cells, where ε is

equal to 0.01. For a typical detection window contain-
ing a car, there should be a dominant orientation of
the gradients. Therefore, if the computed covariance
matrix is eigen-decomposed, the maximum eigenvalue
must exceed a pre-defined threshold (0.09), otherwise
the window is discarded. The intuition behind this is
that the second order statistics given by the covariance
matrix can be used to determine the existence of a
dominant orientation using the rank of the covariance
matrix and the value of its maximum eigenvalue.

Estimation of the orientations of cars: The ori-
entation of cars is discretised into equally-spaced nine
orientations between 0◦ and 180◦. It is estimated to
be in a perpendicular orientation to the bin orienta-
tion corresponding to the maximum eigenvalue of the
covariance matrix IRgg of locally-accumulated gradi-
ents computed over 4× 4 cells.

3.2 Extraction and encoding of features

In this work, not only do we introduce a new en-
semble of image descriptors, but also a new method to
derive and compute descriptors. Traditionally, detec-
tion windows are divided into square cells of equal size.
Image descriptors are then computed over these cells.
For rotation-variant features, windows are rotated in
most cases so that they would have a specific orienta-
tion. However, this rotation process is time consuming
and for small targets, it affects the relative distribution
of the original pixels due to the non-linear transforma-
tion between co-ordinates. To overcome this problem,
adaptive cell distributions are proposed, wherein the
shape of cells is no longer fixed-size squares. According
to the estimated dominant orientation of a window, a
suitable cell distribution is chosen. Two sets of cell dis-
tributions are used in the proposed framework. In the
first set, distributions of cells are originated from the
rotation of a mask oriented horizontally of size 64× 50
pixels and divided into ordered cells of size 8× 10 pix-
els and they are shown in Figure 2. In the second set,
distributions of cells are originated in the same way
but using a mask of size 64 × 52 pixels divided into
ordered cells of size 4× 4 pixels. Corners of each mask
are rounded by eliminating pixels that are located at
a distance more than 31 pixels from the centre of the
detection window.

Gradient descriptors: Gradient descriptors are
exploited to encode the rectilinear structures of cars.
They are computed over the first set of the cell dis-
tributions based on the estimated dominant orienta-
tion of the window. Magnitudes of gradients of local
cells are accumulated in nine-bin histograms accord-
ing to their orientation. The response of each cell is
L2-normalised so that illumination invariance proper-
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ties can be achieved. The final gradient descriptor is
formed from the concatenation of the L2-normalised
eigenvalues of the covariance matrix of the cell re-
sponses of each block of four adjacent cells. This differs
from the original implementation of [7] in the way local
cells are distributed and that the final descriptor con-
sists of the eigenvalues of the local covariance matrices
rather than the absolute local histograms of gradients.
Colour descriptors: Cars exhibit a distinctive dis-

tribution of colours, the colour of windscreens is always
dark in aerial images and the colour of the car boot is
usually the same as the colour of the car bonnet. To
capture this property, a new modified version of the
colour descriptor proposed by [4] is introduced. This
new colour descriptor ccell depends on the calculation
of the similarity among adjacent cells by computing the
intersection between corresponding colour-histogram
bins and it incorporates the principal components of
the covariance matrices of the local cell responses.

ccell = [hc ∩ hn] =

[⌈∑
k

min[hc(k),hn(k)]

⌉]
(1)

where hc and hn are the two grey-level histograms of
the central cell and a neighbouring cell, respectively,
each has 16 bins, hc(k) and hn(k) are scores of the kth

bins of the two histograms and d.e indicates that the
result is truncated at the size of an unsigned integer of
eight bits as recommended by [4]. Local descriptors are
computed on two levels in a pyramid approach using
the two sets of adaptive cell distributions. The final
colour descriptor is formed by concatenating the L2-
normalised local responses and eigenvalues of the local
covariance matrices of the colour histograms in each
level of the pyramid.
Texture descriptors: Many researchers have used

Gabor filters to extract and encode texture motivated
by the similarity between 2-D Gabor filters and the re-
ceptive fields in the visual cortex of the vision systems
of humans [8]. Although cars do not possess distin-
guishable texture, Gabor descriptors characterise tex-
tured areas, such as those of buildings’ roofs and veg-
etation. Gabor filter kernels can be defined as:

FGabor(x, y;λ, θ, ψ, σg, γ) =

exp

(
x′

2
+ γ2y′

2

2σ2
g

)
exp

(
i

(
2π
x′

λ
+ ψ

))
(2)

{
x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ

In this work, nine Gabor kernels of size 64 × 64 are
used, with a wavelength λ of 10 pixels, nine orienta-
tions θk = [10◦, 30◦, ..., 170◦], phase offset ψ of −90◦,
aspect ratio γ of 10 and the variance of the Gaussian
envelop σ2

g of 13.671. After filtering detection windows
using those nine Gabor kernels, windows are divided
into one of the first set of the cell distributions ac-
cording to the estimated orientation of the window.
The mean and energy of the response to the Gabor fil-
ters in each cell are computed at each orientation. For
rotation-invariance, the order of the nine orientations
is changed such that the rotation-invariance property is
achieved by circularly shifting the response at different

orientations θk. The final texture descriptor is formed
from the concatenation of the L2-normalised eigenval-
ues of the covariance matrices of the cell responses of
each block of four cells.

3.3 Classification

A linear support vector machine (SVM) classifier [9]
has been exploited with a regularisation parameter of
15 to distinguish aforementioned ensemble of descrip-
tors that belongs to cars. The overall dimension of this
ensemble is 3838D (216 gradient features, 3190 colour
features and 432 texture features).

3.4 Post-processing

Detection windows with positive score that overlap
by more than 50% are eliminated except the one with
the highest output confidence score in order to keep
only a single true detection.

All values of the aforementioned parameters were set
empirically by excessive testing on the training dataset
using cross validation.

4 Datasets

Training dataset: From the training areas of the
Vaihingen dataset [10] that has a GSD of 8cm, 781 pos-
itive samples that contain cars were chosen. Patches
were chosen such that a great diversity in the orienta-
tion of cars and backgrounds could be achieved. Data
augmentation techniques were exploited by including
mirrored and horizontally-flipped versions. 2473 nega-
tive samples that included patches from different back-
grounds and bootstrapped hard negatives were used.

Testing dataset: The proposed framework was run
on the testing areas of the Vaihingen dataset that in-
clude various urban scenes with different structures.

5 Experimental Results

Qualitative analysis: Sample visual results of ap-
plying the proposed framework are shown in Figure 3.
Our framework is able to robustly detect cars in var-
ious environments. Thanks to the local normalisation
of descriptors, the proposed method is able to correctly
classify detection windows that have poor contrast as
shown in the bottom image of Figure 3 (fourth car from
top), a case which is even hard for the human eye.

Quantitative analysis: Precision and recall curves
are among the standard metrics to evaluate the per-
formance of target-detection systems [11]. The term
“recall” is used here to indicate the proportion of the
truly-detected cars to the total number of ground-
truth cars, whereas the term “precision” indicates the
proportion of truly-detected cars to the total num-
ber of detections above a given confidence score (dis-
tance from the separating hyperplane) [11]. Figure
4 shows that the proposed framework achieves higher
precision at a given recall rate using only linear clas-
sification and a lower dimensionality than the works
in [3, 4], which outperformed traditional HOG-SVM
frameworks. The accuracy of estimating the dominant
orientation is 98.34%.
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Figure 3: Sample regions of the test images of the Vai-
hingen dataset after applying the proposed framework.

Figure 4: Performance of the proposed framework and
baseline methods on the Vaihingen dataset. Baseline
1 [3] exploits 6760D and an IKSVM, baseline 2 [4] ex-
ploits 4996D and a linear SVM, whereas the proposed
framework exploits 3838D and a linear SVM,

Running-time analysis: The proposed framework
has been implemented in a MATLAB environment on
a 2.5 GHz Intel-Core-i5 CPU with a RAM of 6.00 GB
size. Using only a single core, 421 windows can be
processed per second.

6 Conclusion

This paper presented a novel framework for the
detection and localisation of cars in high-resolution
airborne imagery using an ensemble of image de-

scriptors that depicts the distribution of gradients,
colours and texture of cars. The advantages of the
proposed framework were investigated thoroughly and
demonstrated clearly in its ability to achieve a higher
precision than the state of the art. In addition, it
can be learnt that eigenvalues of the local covariance
matrices can work effectively to identify the dominant
orientation of a given window. Rotation-invariance
properties can be achieved using the proposed adap-
tive distribution of cells. Furthermore, it has been
demonstrated that the use of image descriptors
that efficiently depict the visual characteristics of a
particular target of interest can lead to a significantly
improved performance using a linear classifier.
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