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Abstract

In this paper, we propose a framework of action
sequence recognition by combining the representation
of randomized time warping (RTW) with the enhanced
Grassmann discriminant Analysis (eGDA). RTW is
an extension of Dynamic time warping (DTW), and
it has been shown to be effective for motion recogni-
tion, as it can effectively retain an actions temporal
information by generating a low-dimensional subspace
from a set of time elastic (TE) features of a video.
On the other hand, the eGDA can use the concepts of
generalized difference subspace and Grassmann man-
ifold symbiotically to learn a discriminative manifold
where video subspaces can be regarded as points. The
main advantages of the proposed method are: remov-
ing common features between the actions which are not
useful for discrimination, thus increasing the distance
between subspaces of different classes, and reducing the
distance between subspaces of the same class; and esti-
mating a discriminative manifold even if there are few
training data. We demonstrate the validity of the pro-
posed method through experiments on motion recogni-
tion using two public datasets, namely, the Cambridge
gesture database and the KTH action dataset.

1 Introduction

In this paper, we discuss a framework for charac-
terizing and classifying motion image sequences, fo-
cusing on hand gestures and human actions. Among
the methods for motion analysis, dynamic time warp-
ing (DTW) has been one of the most widely used [1].
The core idea of DTW is to search for the best align-
ment of two sequential patterns by optimizing a warp-
ing function, which specifies the sequential correspon-
dence between them. The search is done by dynamic
programming which can optimize the alignment score
and produce the alignment path of the most similar
warped patterns.

DTW has been recently generalized to a faster and
more effective method named randomized time warp-
ing (RTW) [2], which does not need dynamic program-
ming. The core idea of RTW is to generate a set of
time warped patterns, called time elastic (TE) fea-
tures, through repeated random subsampling, while
preserving the original temporal order. This mecha-
nism can be regarded as a simultaneous search for the
most similar warped patterns from a number of ran-
domly obtained candidates. Comparing two sets of
TE features can be costly as the number of features
increase, therefore the comparison is conducted using
a subspace based method, in which each set of TE
features is represented as a low-dimensional subspace,
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Figure 1. Conceptual diagram of the proposed
method. A set of TE features is extracted by ran-
domly sampling images from an image sequence.
Next, a hypo subspace is generated by applying
PCA to the set. For each image sequence, a hypo
subspace is generated in this way. Finally, the
hypo subspaces are orthogonalized by projecting
them onto the GDS, and then are projected onto
the Grassmann Manifold.

called a sequence hypothesis (Hypo) subspace.

The RTW converts the problem of comparing two
sequences to comparing two hypo subspaces, which
can then in turn be solved by measuring the canonical
angles between them. The mutual subspace method
(MSM) [3] is well known as a fundamental classifica-
tion method using canonical angles, which has been
used along with RTW.

Comparison of hypo subspaces has also been per-
formed by introducing the Grassmann manifold for-
mulation, which simplifies the complicated procedure
of the subspace based method using canonical angles.
The Grassmann manifold, symbolized as G(m,D), is
defined as a set of m-dimensional linear subspaces of
RD [4]. In this framework, a subspace-based method
is regarded as a simple classification method on a
Grassmann manifold, where each single subspace is
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treated as a point, and thereby, each motion video
is represented by a point in the manifold. Various
types of classification methods have been constructed
on a Grassmann manifold [5, 6]. But in particular,
RTW formulation has been concretely used along with
the discriminant analysis on a Grassmann manifold
(GDA), which has been known as one of the useful
tools for image set classification. GDA can be easily
conducted as a kernel discriminant analysis through
the kernel trick with a Grassmann kernel.

Although it has been useful to combine RTW with
GDA, some issues arise from this representation:

• TE feature space is usually very high dimensional,
and same-class actions may have vary large varia-
tion in this space;

• some parts in time of some actions’ movement may
look similar to that of others, causing overlap of
the different actions distributions in the TE fea-
ture space;

• GDA is capable of finding the most discriminant
directions in a manifold only from the given points
on the manifold, and it cannot operate the TE
features points directly. Hence, if classes were not
separable in the TE feature space, the correspond-
ing data points on the manifold are also not sep-
arable.

From this viewpoint, we propose to project class
subspaces onto a generalized difference subspace
(GDS) [7], before mapping each class subspace on a
Grassmann manifold, as can be seen in Fig 1. This idea
has been recently useful for subspaces which represent
3D object recognition [8]. As GDS has been shown to
magnify the angles between different class subspaces to
provide more discriminative sample for GDA, it is ex-
pected this mechanism can improve the representation
of the RTW hypo subspaces on the Grassmann man-
ifold. The validity of our proposed method is demon-
strated through experiments with the Cambridge ges-
ture database [9] and the KTH action dataset [10].

The rest of the paper is organized as follows. In
Sec.2, we explain the proposed framework for classi-
fying motion in detail. In Sec.3, we conduct experi-
ments on motion recognition using two public datasets,
namely, the Cambridge hand gesture database and the
KTH action dataset. Sec.4 concludes the paper.

2 Algorithm of the Proposed Method

In this section, we explain the algorithm of the pro-
posed method.

In our framework, an image with the size w × h is
represented by a d(= w × h)-dimensional vector, so
that any given feature vector x ∈ Rd. Consider Nc

training ordered sequences {xi,c
l }

Lc
i

l=1 for each c-th class
(c = 1, . . . , C) and an ordered sequence of Lin input

images {xin
l }

Lin

l=1 . Each of these sequences represent a
body motion or hand gesture captured by video, for
example.

An d × k dimensional TE feature vector s =
[yT

1 y
T
2 . . .yT

k ] is created by randomly selecting

k images from a sequence {xi,c
l }

Lc
i

l=1, such that

yT
1 y

T
2 . . .yT

k ∈ {x
i,c
l }

Lc
i

l=1, t(y1) < . . . < t(yk), where
t(·) denotes the original order of the image.

Let this procedure of random selection be repeated
Z times, such that we obtain s1, . . . , sZ . Subsequently,
a correlation-like matrix Rc

i , which corresponds to the
set of the TE feature vectors, can be computed as:

Rc
i =

1

Z

Z∑
z=1

si,cz s
i,c>

z . (1)

We apply principal component analysis (PCA) by
computing the eigenvectors of each matrix Rc

i to con-
struct m-dimensional subspaces Yc

i . The orthogonal
basis of each subspace are obtained as the eigenvec-
tors corresponding to the m largest eigenvalues. In
the following, each subspace m-dimensional Yc

i is rep-
resented by the matrix Y c

i ∈ Rkd×m, which has the
corresponding orthogonal basis as its column vectors.
A set of TE features generated from a sequence con-
tains various possible warped patterns, each of which
corresponds to one hypothesis. In this sense, the sub-
space generated from a set of TE features is called a
sequence hypothesis (Hypo) subspace.

In order to utilize effectively the feature extrac-
tion function of GDS, we introduce the global class
subspaces Mc, which is denoted by a matrix Mc ∈
Rkd×dm , which represents compactly all the subspaces
belonging to the same class c. The orthogonal basis of
Mc can be obtained as the eigenvectors corresponding
to the dm largest eigenvalues of the auto-correlation
matrix:

Rc =
1

Nc

Nc∑
i=1

Rc
i =

1

ZNc

Nc∑
i=1

Z∑
z=1

si,cz s
i,c>

z . (2)

Next, to generate a GDS, we calculate the total sum
matrix, S, which is defined as:

S =

C∑
c=1

dm∑
j=1

Φc
jΦ

c>
j , (3)

where Φc
j is a basis of the dm-dimensional Mc. The

orthogonal basis of the GDS can be obtained as dh
eigenvectors, {di}dh

i=1 corresponding to the dh smallest
eigenvalues of the sum matrix S. The subspaces Y c

i
are projected onto the GDS and their projections are

denoted by {Ỹ c
i }

Nc
i=1 ∈ Rdh×m. The input subspace of

X is also projected onto the GDS and its projection is

denoted by X̃.
We apply the GDA algorithm to these projected sub-

spaces. For example, the kernel matrix, K, is calcu-
lated as the similarity matrix between class subspaces

Ỹq and Ỹw. The step-by-step training and testing al-
gorithms of the proposed method are shown in Algo-
rithms 1 and 2, respectively.

3 Experiments

In this section, we discuss the validity of the pro-
posed method through hand gesture and human action
recognition tasks.
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Algorithm 1: Learning algorithm of the proposed
method

input: training ordered sequences {xi,c
l }

Lc
i

l=1, with
class label c

for c = 1, . . . , C do
for i = 1, . . . , Nc do

{si,cz }Zz=1 ← TE({xi,c
l }

Lc
i

l=1) // obtain TE
features

Rc
i ← 1

Z

∑Z
z=1 s

i,c
z s

i,c>

z // calculate

set covariance matrix
Y c
i ← EVD(Rc

i ) // apply
eigendecomposition

end

Rc ← 1
Nc

∑Nc

i=1R
c
i // calculate class

covariance matrix
Mc ← EVD(Rc) // apply
eigendecomposition

end

P ,H ← EVD(
∑C

c=1McM
>
c ) // obtain GDS

and principal subspace

foreach Y c
i do Ỹ c

i ← H>Y c
i // project all

subspaces onto the GDS
for q = 1, . . . , N do

for w = 1, . . . , N do

[Strain]wq ← kp(Ỹq, Ỹw) // generate

similarity matrix

end
end
α∗ ← maxα Ra(α) // solve LDA problem

Ftrain ← α∗
>
Strain // compute training

coefficients
return Ftrain,H,α∗ // return dictionary,
GDS and GDA projection operators

Algorithm 2: Input evaluation algorithm of the
proposed method

input: pattern set with L′ input images {xin}
{sinz }Zz=1 ← TE({xin}) // obtain TE features

Rin ← 1
Z

∑Z
z=1 s

in
z s

in>

z // calculate set

covariance matrix
X ← EVD(Rin) // apply eigendecomposition

X̃ ←H>X // project subspace onto the
GDS

for q = 1, . . . , N do

[Stest]q ← kp(Ỹq, X̃) // generate
similarity matrix

end

Ftest ← α∗
>
Stest // compute test

coefficients

pred(xin)← NN(Ftrain,Ftest) // perform 1-NN
classification

return pred(xin) // return a class
prediction

Table 1. Results of the Cambridge Hand Dataset
Experiment. m refers to the dimension of the
hypo subspaces, dm is the dimension of the global
class subspaces, and dp is the dimension of the
principal subspace, which is complementary to
the GDS.

Accuracy (%) m dm dp
RTW+GDA 91.56 6 - -

RTW+eGDA 94.89 5 50 15

3.1 Experiment with Cambridge Hand Dataset

We conducted two types of experiments with the
Cambridge hand gesture dataset. This database con-
tains 9 classes of hand gesture videos, each in 5 illumi-
nation scenarios, and 20 sample videos for each of the
scenarios and classes. The number of frames of each
video ranges from 37 to 119. In addition, in the exper-
iments, all the images were resized to 12× 16 pixels.

In the first experiment, we performed a qualitative
experiment to aid in the visualization of the proposed
method mechanism. We utilize three classes of hand
gestures from the Cambridge dataset, each containing
50 videos. Figure 2 shows scatter plots of the generated
points corresponding to the hypo subspaces, by using
the conventional method and the proposed method.
The figure suggests that by using the proposed frame-
work, reduction of the distance between subspaces of
the same class can be achieved.

In the second experiment, we compared the combi-
nation of RTW and conventional GDA with RTW and
the enhanced GDA. The number of selected frames to
build one TE feature is fixed at 15, the number of TE
features for each set is fixed to be 100. The other pa-
rameters, namely, dimension of hypo subspaces m, di-
mension of class subspaces dm, and dimension of prin-
cipal subspace dp were varied and optimized. The re-
sults can be seen in Table 1.

Table 2. Results of the KTH Action Dataset Ex-
periment.

Accuracy (%) m dm dp
RTW+GDA 82.03 10 - -

RTW+eGDA 83.96 10 120 5

3.2 Experiment with KTH Action Dataset

We also conducted an experiment using the KTH
action dataset. This database contains 6 classes of
actions performed by humans in videos,namely: box-
ing, hand clapping, hand waving, running, jogging,
and walking. The videos were filmed under 4 differ-
ent shooting conditions: outdoors, outdoors with vari-
ation of zooming, outdoors with different clothes, and
indoors.There are 4 sample videos for each of the condi-
tions and classes. The number of frames of each video
ranges from 37 to 119. In addition, in the experiments,
all the images were resized to 16 × 16 pixels. In total
there are 2391 sequences of actions.

We compare the combination of RTW and conven-
tional GDA with RTW and the enhanced GDA. 2 rep-
etitions were used for testing and 2 for training. The
number of selected frames to build on TE feature is
fixed at 15, and the number of TE features for each set

66



-0.2 -0.1 0 0.1 0.2 0.3
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

(a) Conventional GDA

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

(b) eGDA

Figure 2. Scatter points of three hand gesture
classes by using RTW combined with (a) Con-
ventional GDA; (b) eGDA.

is fixed to be 100. The other parameters, namely di-
mension of subspaces, class subspaces, and GDS were
varied and optimized. The results can be seen in Ta-
ble 2.

4 Conclusions

In this paper we have proposed a combination of
randomized time warping and eGDA, to address more
effectively the classification of motion sequences, focus-
ing on the applications of hand gestures and human
action classification. The key idea of our enhanced
Grassmann manifold is to project class subspaces onto
a generalized difference subspace before mapping them
on a Grassmann manifold. The GDS projection can
extract the differences between classes and generate

data points with optimized between-class separability
on the manifold, which are more desirable for GDA.
The validity of our enhanced Grassmann discriminant
analysis was evaluated through classification experi-
ments with Cambridge hand gesture dataset and KTH
action dataset, where it outperformed the state-of-the-
art method by using RTW and GDA. As a future work,
we seek to comprehend the relationship between the
two types of mapping in GDS projection and Grass-
mann manifold more clearly.
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