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Abstract

SLAM(Simultaneous Localization and Mapping)
is one of the core subjects in computer vision and
robotics. In order to avoid the effects of noise, SLAM
systems need devises to remove the moving object such
as human beings and cars in real-world environment.
In this paper, we propose a method which excludes dy-
namic features and generate a map in crowded environ-
ment, called ICGM2.5. Experiments were conducted in
indoor and outdoor crowded real environments. Experi-
mental results show that our approach has superior per-
formace compared to conventional approaches in terms
of accuracy.

1 Introduction

SLAM (Simultaneous Localization and Mapping) is
indispensable for mobile robots moving in unknown
indoor and/or underground environments without a
map. And Visual-SLAM is considered as SLAM with
a simple system configuration. The method uses only
cameras as external sensors and executes the SLAM
only from the image information. Conventionally,
Visual-SLAM systems are executed in environments
where dynamic objects such as humans and cars do not
exist. This is because accuracy descends by confusingly
register dynamic objects unrelated to the environmen-
tal map as landmarks. [6] However, because the real-
world environments are dynamic, mobile robots need
to have a Visual-SLAM which can maintain accuracy
in those environments. In this paper, we propose a
Visual-SLAM system which is robust in dynamic real-
world environments.

2 Related research

Studies that use only hand-held cameras to maintain
the accuracy of Visual-SLAM in dynamic environments
are few due to the restrictions. In order to suppress the
influence from dynamic objects and accurately match
the local feature, some methods of dividing local fea-
tures obtained from an image into dynamic features
and static features have been proposed. Kawewong et
al have proposed PIRF (Position Invariant Robust Fea-
tures) [3], and that showed better accuracy in dynamic
environments[6].
Hua et al have proposed another approach named

ICGM (Incremental Center of Gravity Matching) [2].
In ICGM, the centroids of static local features are first

calculated, and vectors from the centroid to each lo-
cal features are obtained. These vectors are compared
with those of the previous frame, and if the vectors
to each local features differ between frames, this local
features are identified as dynamic local features.

For example, as in figure 1, features A, B, C, D, E
exist in image It, and corresponding features A’, B’,
C’, D’, E’ exist in image It−1. Also, features A, B and
C are static features, and it is unknown whether D
and E are dynamic or static feature. The same applies
to corresponding features. In this case, ICGM first
obtains the center of gravity O of the static features
A, B, C and similarly obtains the centroid O’ of A’,
B’, C’. Next, vectors from the centers of gravity O, O’
to the features D, D’, E, E’ are calculated. Here, the

vectors of
−−→
OD and

−−−→
O′D′ are different between frames,

and the vectors of
−−→
OE and

−−−→
O′E′ are equal between

frames. Therefore, feature D is identified as a dynamic
feature and feature E as a static feature.

Figure 1. Concept of ICGM. Find the center of
gravity O of the known static features A, B, C
and calculate the vector from O to the unknown
feature. If this vector differs between preceding
and succeeding frames, that feature is identified
as a dynamic feature.

Moreover, Kayanuma et al proposed ICGM 2.0 [1].
This is a method for improving the accuracy of ICGM
by performing PIRF as preprocessing for ICGM, calcu-
lating the centroid after reducing the dynamic feature
in advance. As a result, SLAM with higher accuracy
than PIRF and ICGM is realized.
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3 Proposed method

The purpose of this research is to divide dynamic
features and static features in images and to perform
highly accurate Visual-SLAM even in dynamic envi-
ronments such as crowds. In consideration of ease of
application to the system, the external sensor to be
used is only a hand-held monocular camera. Therefore,
in this research, we focus on ICGM 2.0 that can per-
form highly accurate Visual-SLAM even under these
constraints, and propose ICGM 2.5 with improved ac-
curacy.

3.1 ICGM2.5

ICGM 2.5 has the same concept as ICGM 2.0 and
improves the problem on the algorithm. The outline is
as follows.
First, as a problem on the algorithm of ICGM 2.0,

there is a possibility that static features can not be
selected as features to be used when obtaining the po-
sition of the center of gravity. Under the premise that
known static features exist, ICGM calculates the cen-
troid of randomly chosen features from them. How-
ever, in the real world it is unknown whether or not
specific features are static features, so there is a pos-
sibility that system can not divide it well by choosing
dynamic features at the time of center of gravity cal-
culation. Therefore, in the proposed method, dynamic
features are reduced in advance before centroid calcu-
lation of static local features. This approach reduces
the possibility of including dynamic features among
the local features used to determine the position of
the center of gravity. The proposed method selects a
feature with a shorter matching distance between the
images It and It−1 as a local feature for calculating
the center of gravity to further improve the accuracy.
The matching distance is an index indicating the de-
gree of similarity between two matched features and is
obtained from the descriptor of each feature. We sort
the features in ascending order of matching distances
and select k features from short ones to calculate the
centroid of ICGM. With these improvements, the pro-
posed method realizes accuracy improvement from the
conventional method.
Next, we show the calculation of the centroid posi-

tion and the deletion of the dynamic features after the
static features are properly chosen. Given that CG is
the position of the center of gravity and pi is the co-
ordinate of the local features determined to be static
features, the position of the center of gravity can be
obtained from the equation 1.

CG =

[
X
Y

]
=

1

k

k∑
i=0

pi (1)

Here, k is the number of static features used for center
of gravity calculation, and in this study k = 5. Also,
the elements of the vectors to the coordinates P of the
arbitrary local features from the centroid position CG
are defined as the equation 2.

CGV = CG− P =
1

k

k∑
i=0

pi − P (2)

Algorithm 1 Algorithm of ICGM2.5

Require:
N：Number of sequential image
ni：Number of local features of ith image
Pi = (p1,i, p2,i, ..., pni−1,i, pni,i)：Set of local features

in ith image
Disti = (dist1,i, dist2,i, ..., distni−1,i, distni,i)：Set of
matching distances in ith image
for i = 1 to N do

GoodCenterOfGravity ← false
while GoodCenterOfGravity = false do
s1, s2..., sk ← Subscript of min(Disti), second
min(Disti),..., k

th min(Disti)
CGi ← (ps1,i + ...+ psk,i)/k
CGi−1 ← (ps1,i−1 + ...+ psk,i−1)/k
CGVi ← CGi − (ps1,i, ..., psk,i)
CGVi−1 ← CGi−1 − (ps1,i−1, ..., psk,i−1)
Delete min(Disti), second min(Disti),..., kth

min(Disti) from Disti
if RoD ≤ ThrCG then
GoodCenterOfGravity ← true
Delete ps1,i, ..., psk,i from Pi

Delete ps1,i−1, ..., psk,i−1 from Pi−1

end if
end while
CGVi ← CGi − Pi

CGVi−1 ← CGi−1 − Pi−1

for j = 1 to ni do
if RoD ≤ ThrICGM then
P ICGM2.5
i ← pj,i

P ICGM2.5
i−1 ← pj,i−1

end if
end for

end for

From this equation, in consecutive frames It−1 and It,
Vectors CGVT−1 and CGVT representing the relation-
ship between the centroid position CG and each fea-
tures p are obtained. Using these vectors, calculate the
ratio of difference RoD by the following equation 3.

RoD =
||CGVT − CGVT−1||
||CGVT ||+ ||CGVT−1||

(3)

By comparing this RoD with the threshold ThrICGM , it
is distinguished whether each feature is static features
or dynamic features. RoD ≤ ThrICGM is identified as
static features. On the other hand, the feature RoD >
ThrICGM is identified as dynamic features and deleted.
Details of the algorithm of ICGM 2.5 are shown in
Algorithm 1.

3.2 Deletion of dynamic feature

In this research, ORB [5] is used as the local feature.
Figure 2 shows the comparison of the result of dynamic
feature reduction using the proposed method and con-
ventional method from this local feature. (A) shows a
state in which no dynamic feature deletion processing
is performed, and (b) shows a state in which dynamic
feature deletion processing is performed by ICGM. (C)
shows the state by ICGM 2.0, and (d) shows the state
by ICGM 2.5 which is the proposed method. (a) ex-
tracts a lot of features from human beings which are
dynamic elements in the image, (b), (c) and (d) reduce
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dynamic features from (a). Among them, the proposed
method reduces the dynamic features compared to (b)
and (c), and the effectiveness of the proposed method
can be confirmed.

(a)ORB[5] (b)ICGM[2]

(d)Proposed(c)ICGM2.0[1]

Figure 2. Comparison of feature points．(a) ex-
tracts feature points as they are. (b), (c) and
(d) show how the feature points extracted from
the human being, which is dynamic elements in
the image, is reduced by each method. It can
be confirmed that the proposed method shown
in (d) most effectively removes dynamic features.

4 Experiment

In order to verify the superiority of the proposed
method in Visual Odometry, we conduct compara-
tive experiments with conventional methods. As an
evaluation method, with reference to the evaluation
method by [1], evaluations are performed using the er-
ror rate obtained by dividing the difference between
the start and end points by the length of the whole Vi-
sual Odometry. Since the difference between the start
and end points is the error accumulated when creating
Visual Odometry, this error rate can be regarded as the
average error appearing per unit distance. We selected
two crowded environments indoor and outdoor as ex-
perimental environments and conducted experiments.
The threshold values and parameters used for ex-

periments are shown. The threshold to determine the
static / dynamic of the feature based on ICGM is
ThrICGM = 0.7, and the threshold to measure the va-
lidity of the calculated center of gravity is ThrCG =
0.7. The resolution of the camera is 1280 × 960, and
the frame rate of the continuous image is 12fps.

4.1 Indoor evaluation experiment

The indoor experimental environment and its route
are Indicated on Figure 3. The experiment was con-
ducted near the Tokaido Line Shibuya station under-
ground ticket gate. The experimental environment is
about 100m × 50m, and the length of one round of
the route is about 200m. We create a visual Odometry

based on the continuous image shot according to the
experimental route indicated by the red dashed line.

Figure 3. Indoor experiments environment

4.2 Result of indoor evaluation experiment

Indoor experiment results are shown in Table 1 and
Figure 4. As shown in the Table 1, the proposed
method significantly reduces the error rate compared
with the conventional method. As can be seen from
Figure 4, it can be seen that the proposed method gen-
erates Visual Odometry with smaller error between the
start and end points. From these results, it is shown
that the proposed method can more effectively invali-
date the influence of dynamic features such as pedes-
trians.

Table 1. Indoor experimental results
Method Error rate[%] Time[s]

Proposed 0.46 1.22
ICGM2.0[1] 2.13 1.19
ICGM[2] 2.75 1.20
PIRF[3] 2.43 1.25

Libviso2[4] 5.76 1.16
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Figure 4. Indoor experimental results : Visual
Odometry. The proposed method is closer to the
start and end points of the loop than the conven-
tional method. The system is drawing an accu-
rate Visual Odometry.

4.3 Outdoor evaluation experiment

The outdoor experiment environment and its route
are indicated on Figure 5. The experiment was con-
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Figure 6. Outdoor experimental results : Visual
Odometry. As in the indoor experiments, the
proposed method is closer to the start and end
points of the loop than the conventional method
and draws accurate Visual Odometry.

ducted in the outdoor environment in front of Machida
station. The experimental environment is about 80m
× 100m, and the length of one round of the route is
about 230m. We create a visual Odometry based on
the continuous image shot according to the experimen-
tal route indicated by the red dashed line.

Figure 5. Outdoor experiments environment [7]

4.4 Results of outdoor evaluation experiment

Outdoor experiment results are shown in Table 2
and Figure 6. As shown in the Table 2, the proposed
method significantly reduces the error rate compared
with the conventional method. As can be seen from
Figure 6, it can be seen that the proposed method
generates a visual Odometry with a smaller error be-
tween the start and end points. From these results, It
has been shown that the influence of dynamic features
such as pedestrians can be more effectively invalidated
in indoor and outdoor environments. Also, despite the
greatly improved accuracy, the increase in processing
time is kept to a very small extent.

Table 2. Outdoor experimental results
Method Error rate[%] Time[s]

Proposed 2.13 1.64
ICGM2.0[1] 6.22 1.41
ICGM[2] 8.22 1.59
PIRF[3] 7.52 1.54

Libviso2[4] 8.92 1.48

5 Conclusion

In this paper, we proposed a novel Visual-SLAM ap-
proach which is robust to the effects from dynamic ob-
jects in SLAM process.
In order to verify the superiority of the proposed

method, we conducted experiments of Visual Odom-
etry under indoor and outdoor crowded environ-
ments. Experimental results showed that the proposed
method is superior to conventional methods in terms
of accuracy.
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