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Abstract

Clothing appearances have complex visual proper-
ties, such as color, texture, shape and structure. D-
ifferent modalities of visual features provide informa-
tion complementary to each other. Combining multi-
modal visual features can lead to a comprehensive de-
scription of Clothing appearances. Meanwhile, cate-
gories provide sufficient semantic information, which
can lead to discriminative representations. Clothing
categories exhibit hierarchical structure, which could
benefit the learning altorithm. In this paper, we
propose a multi-view learning algorithm, named Su-
pervised Multi-modal Dictionary Learning (SMMDL),
which learns a latent space encoding multi-modal visual
properties and semantic relationships between clothing
samples. Experiments on the image classification task
show that SMMDL outperforms baseline methods.

1 Introduction

Clothing appearances have complex visual proper-
ties, such as color, texture, shape and structure. Us-
ing one single modality of visual features is incapable
of representing large-scale clothing images effectively.
A straightforward solution for combining multi-modal
visual features is to concatenate the feature vectors to
form a new vector. However, this method ignores the
specific statistical properties of different modalities and
usually incurs the curse of dimensionality problem.

Combing multi-modal visual features can be solved
by multi-view learning approach, which aims at learn-
ing unified representations from multi-view data. A
growing area in the multi-view learning literature is
multi-view latent subspace learning, which aims at ob-
taining a unified latent subspace shared by multiple
views. This approach includes Canonical Correlation
Analysis (CCA) [1], the shared Kernel Information
Embedding model (sKIE) [3], and the shared Gaus-
sian Process Latent Variable Model (shared GPLVM)
[4,5,6]. However, these methods do not account for
the independent parts of the views, and therefore ei-
ther totally fail to represent them, or mix them with
the information shared by all views.

In our opinion, useful information patterns hidden in
multi-view data might not be associated with all the
views. For example, images of concept plaid shirts ex-
hibit visual patterns which are associated with texture
features but independent on color features, since the
plaid can be in different colors. Thus we need to design
a latent space learning algorithm which can correctly
factorize the information of all views into shared and
private parts. Fortunately, to the best of our knowl-
edge there are already three papers trying to solve this

problem [7,8,9]. We chose to use Jia Yangqings work
[9], because it avoids the computational burden of oth-
er techniques [7,8].
In supervised tasks, its important to exploit the la-

bel information. In dictionary learning, some works
[10,11,12,13] introduce laplacian regularization terms
or loss functions into the optimization problem. In
[10,11], a laplacian regularization term was introduced
to preserve the consistence of sparse codes for the sim-
ilar local features. In [12,13], loss functions were incor-
porated into the objective function, which enhances the
discriminative power of sparse codes. However, incor-
porating loss function also makes the learning process
more complex and brings more computational burden.
Besides, all the works mentioned above haven’t consid-
ered the semantic hierarchy of class labels.
Clothing categories exhibit hierarchical structure,

which encodes sufficient semantic relationships be-
tween clothing samples. For example, jacket and shirt
belong to tops, while trouser and breeches belong to
bottoms. The latent space learning process could ben-
efit from the hierarchical structure, which exploits the
inter-class semantic correlations in the label space.
The idea of exploiting category hierarchy has been
extensively studied in the computer vision communi-
ty under different frameworks. For example, in [14]
Bengio has introduced an approach for fast multi-class
classification by learning label embedding trees; in [15]
Binder has proposed a structured learning framework
to study the problem of classifying images into a pre-
determined taxonomy (category hierarchy).
If a feature assigns similar values to the instances

that are close to each other on a given graph, it in-
dicates that the feature is consistent with the graph
structure. The laplacian regularization term [10,11]
quantifies how much the feature varies locally or how
smooth it is over the Graph. Thus, using the label
information to construct the graph, the laplacian reg-
ularization term can quantify how consistent the fea-
ture is with the label information. Inspired by this, in
this paper we leverage the laplacian regularization ter-
m used in [10,11] to capture the semantic relationships
between clothing samples in a hierarchical way, which
hasn’t been exploited in the previous works.

2 Supervised Multi-modal Dictionary
Learning

In this section, we introduce Supervised Multi-modal
Dictionary Learning. From the set of clothing im-
ages, we first extract four modalities of visual fea-
tures: color, texture, shape and structure. For each
image, 7936D Histogram of Oriented Gradient [16] is
extracted to characterize its textural property. 10D
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Fourier Descriptor [17] is extracted to characterize it-
s shape property. 512D GIST [18] is extracted to
characterize its structure property. And 512D color
histogram [19] (i.e., R, G, B color channels are first
quantized into 8 units) is extracted to characterize it-
s color property. Let {X(v)}4v=1 denotes the feature

matrix of N images, where X(v) ∈ RMv×N
+ contain-

s the feature vectors for the vth modality. We aim
to find an embedding α ∈ RK×N

+ of the data into a
K-dimensional latent space and a set of dictionaries
{D(v)}4v=1, with D(v) ∈ RMv×K

+ the dictionary entries

for the vth modality.

2.1 Multi-modal Dictionary Learning

The basic optimization framework of SMMDL tries
to learn a common latent space via a shared latent
embedding α:

min
{D(v)}H

v=1,α

1

2

4∑
v=1

∥X(v) −D(v)α∥
2

F

s.t.D
(v)
ik ≥ 0, 1 ≥ αkj ≥ 0, ∀i, j, k, v

(1)

in this way, each image is forced to have the same em-
bedding under different modalities, and the dictionar-
ies of different modalities are coupled together through
α. Furthermore, as explained in Section 1, we aim to
find a latent space that naturally separates the infor-
mation shared among several modalities from the in-
formation private to each modality. We leverage Jia’s
work [9] to enforce structured sparsity on the dictio-
nary entries, which lets latent dimensions be shared
across any subset of the modalities rather than across
all modalities only. For each D(v), a structured sparse-
ness regularizer is added to the objective function (1)
to encourage some columns to be zeroed-out. One can
achieve structured sparsity via L1,q norm where q is an
integer ranging from 1 to ∞ :

∥D(v)∥1,q =
K∑

k=1

∥D(v)
k ∥

q
(2)

where D
(v)
k denotes the kth column of D(v). In prac-

tice, we chose the L1,∞ norm regularizer which has
proven more effective than the others [24]:

∥D(v)∥1,∞ =

K∑
k=1

max
1≤i≤Mv

|D(v)
ik | (3)

now, we can re-formulating (1) as:

min
{D(v)}H

v=1,α

1

2

4∑
v=1

∥X(v) −D(v)α∥
2

F + γ
4∑

v=1

∥D(v)∥1,∞

s.t.D
(v)
ik ≥ 0, 1 ≥ αkj ≥ 0, ∀i, j, k, v

(4)

2.2 Hierarchical Laplacian regularization term

In [10], the laplacian regularization term is defined
as follows: ∑

ij

∥αi − αj∥2Wij (5)

overcoat 

woolen eiderdown 

tops 

jacket shirt 

pants 

long short … … … 

… 

Figure 1. An example, a two-level hierarchical
structure of clothing categories

where αi denotes the i-th column of α, W denotes the
similarity matrix of a graph G. The function above
quantifies how much α varies locally or how smooth it
is over G. A smooth α assigns similar vectors to the
instances that are close to each other on G, thus it is
consistent with the graph structure. This observation
is the motivation behind [10].
Clothing categories exhibit hierarchical structure.

As shown in Figure 1, we leverage a two-level hierarchy
to guide the latent space learning. For each level, we
construct a graph, where the nodes are training images
and each edge is weighted by the similarity between the
nodes it’s associated with. Using the label information
to compute the similarity, the laplacian regularization
term can measure the latent space’s consistency with
the class labels of each level.
Using the class labels of a certain level, the similarity

between images can be defined by:

Wij =

{
1
Nl

− 1
N , yi = yj = l

0, otherwise
(6)

where Nl denotes the number of instances in class l,
yi denotes the class label of training image i, n is the
number of training images.
We use G1 to denote the graph of top level in Fig-

ure 2, and G2 denotes the graph of bottom level. W 1

denotes the similarity matrix of graph G1, W
2 denotes

the similarity matrix of graph G2. The hierarchical
Laplacian regularization term is defined as follows:

η

2

N∑
i=1

N∑
j=1

W 1
ij∥αi − αj∥22 +

ξ

2

N∑
i=1

N∑
j=1

W 2
ij∥αi − αj∥22

=
η

2
tr[αL1(α)T ] +

ξ

2
tr[αL2(α)T ]

(7)
where tr(.) denotes the trace of a matrix, L1 = U1−W 1

is the Laplacian matrix for graph G1 with the (i, i)th

element of the diagonal matrix U1 equals
∑N

j=1 W
1
ij

(L2 is for G2).
By synthesizing the above objectives, the optimiza-

tion problem of SMMDL is formulated as:

min
{D(v)}H

v=1,α

1

2

4∑
v=1

∥X(v) −D(v)α∥
2

F + γ

4∑
v=1

∥D(v)∥1,∞

+
η

2
tr[αL1(α)T ] +

ξ

2
tr[αL2(α)T ]

s.t.D
(v)
ik ≥ 0, 1 ≥ αkj ≥ 0, ∀i, j, k, v

(8)

2.3 Optimization

we develop an iterative algorithm to optimize the
variables {D(v)}4v=1 and α alternatively.
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It is clear that, when α is fixed, {D(v)}4v=1 are in-
dependent with one another. Since the optimization
method is the same, here we just focus on an arbi-
trary modality and use X and D to denote respectively
the feature matrix and the dictionary for the modality.
The subproblem involving D can be written as:

min
D

1

2
∥X −Dα∥2F + γ∥D∥1,∞, s.t.Dik ≥ 0,∀i, k (9)

To optimize function (9), we use an optimization al-
gorithm developed in [21], which is based on the com-
posite gradient mapping technique proposed for mini-
mizing composite objective functions [22]. The idea is
to iteratively minimize an auxiliary function and ad-
just the guess of the Lipschitz constant of the first term
of function (9), so that the objective function can be
decreased as fast as possible. The details of the Com-
posite Gradient Mapping algorithm can be found in
[21].

For the optimization of α, we leverage a multiplica-
tive update algorithm [21], which is based on a general
multiplicative optimization scheme proposed in [23].
The update rule is as follow:

αt+1
kj = min{1,

−Bkj +
√
B2

kj + 4AkjCkj

2Akj
αt
kj}

Akj = (Pαt
j)k + η((U1 +

ξ

η
U2)αt

k)j ,

Bkj = −Qkj ,

Ckj = η((W 1 +
ξ

η
W 2)αt

k)j

(10)

where P =
∑4

v=1(D
(v))TD(v), Q =

∑4
v=1(D

(v))TX(v).
The detailed derivations are similar with those in [21],
which can be found in the appendix of [21]. Given a
new observation, the corresponding α∗ can be obtained
by solving the objective function (1).

3 Experiment

In order to evaluate the SMMDL, we collect two
datasets from the Internet: one is collected from e-
Commerce websites (e-commerce), such as JD.com and
Amazon.com; the other is collected from bing.com
and google.com (street), where we input keywords like
“jeans street style” and download the search result-
s. The first dataset includes 11,700 images with pure
background, and the other includes 6,628 images with
complex background. Both exhibit a two-level hier-
archy, such as tops (shirts, jacket, sweater, ...), pants
(jeans, chinos, cargo pants, ...) and skirt (wedding
dress, cheongsam, formal dress, ...). Four fifths of im-
ages are randomly selected as training set, and the rest
as test set. For classification, we use a kNN classifier(
k=10) and the accuracy of the classifier on the test set
is calculated.

Baseline methods include:

1 best view (Single-B): This baseline applies each
view to the classification task,and reports the best
performance.

2 feature concatenation (Concat): This method
concatenates feature vectors of different modali-
ties to form a united representation.

Table 1. Classification Performances
e-commerce Accuracy street Accuracy
Single-B 0.4466 Single-B 0.2601
Concat 0.4517 Concat 0.2678
CCA 0.4796 CCA 0.2787
GMA 0.4973 GMA 0.3272
shared 0.48 shared 0.2873
SMMDL 0.5520 SMMDL 0.3583

3 shared multi-modal dictionary learning (shared):
objective function (1) is used to learn the shared
latent space.

4 Canonical Correlation Analysis (CCA): CCA [1]
has been the workhorse for learning a common
latent space which is evident from its wide-spread
use in vision [2].

5 Generalized Multiview Analysis (GMA): GMA [2]
is a supervised extension of Canonical Correlation-
al Analysis (CCA).

Tables 1 shows the classification performance result-
s on two datasets. Observations are as follows. First,
methods that made use of multi-modal features outper-
formed Single-B, which only used one modality. Sec-
ond, supervised methods outperformed unsupervised
methods, which indicated that exploiting label infor-
mation could lead to more discriminative latent fea-
tures. Third, SMMDL outperformed other methods
evaluated in this paper.
Figure 2 shows the influence of different parame-

ter settings on the performance of SMMDL. We vary
one parameter at a time while fixing the other two.
The general behavior of the three parameters was the
same: when increasing the parameter from 0, the per-
formance curves first went up and then went down.
This indicates that assigning moderate weights is im-
portant in the practice. The performance of SMMDL
is sensitive to the value of γ. When the value of γ is
larger than 80, the performance might drop drastically.
For η and ξ, small values are better choices. We tested
η = 10 and ξ = 0, which is not shown in Figure 2,
and the accuracy of SMMDL on e-commerce dropped
to 0.3356. This indicates that large value of η and ξ
would lead to serious over-fitting problem.

4 Conclusions

In this paper, we propose a multi-view learning al-
gorithm, named Supervised Multi-modal Dictionary
Learning (SMMDL), which exploits multi-modal vi-
sual features and label information to learn a latent
space for clothing representation. Experiments show
that SMMDL has achieved competitive results.
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