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Abstract 

We propose a new color imaging system based on a 
compressive sensing technique. Our system consists of a 
random complementary color filter array (CFA) for 
random projection and a color reconstruction method for 
demosaicing. Our CFA overlaps two complementary 
color filters and consists of six color filters: cyan (C), 
yellow (Y), magenta (M), C+Y, C+M, and Y+M. By ar-
ranging these six color filters randomly, our imaging 
system achieves pseudo random projection among red (R) 
/ green (G) / blue (B) colors, which is the key technology 
of compressive sensing. Because this CFA can retain more 
color information than RGB CFA, the proposed color 
reconstruction method reduces artifacts at monochro-
matic edges and in high-frequency regions, and obtains 
better image quality. As an additional contribution, we 
introduce saturation consistency to suppress color arti-
facts in saturated areas, then achieve to 3.3 dB higher 
quality images than the conventional method. 

1. Introduction 

Single-imager cameras, which use a color filter array 
(CFA) for color imaging, have become mainstream over 
the past decade. The most popular CFA is a Bayer pattern 
that consists of two green (G) filters, one red (R) filter, 
and one blue (B) filter of 2x2 pixels each, as illustrated in 
Fig. 1(a). In order to reconstruct a full color image from a 
raw image captured by this CFA, many demosaicing 
algorithms have been proposed. Hamilton and Adams [1] 
proposed Adaptive Color Plane Interpolation (ACPI) that 
interpolates color using the correlation among color 
channels and the orientation of an edge. Kiku et al. [2] 
proposed Minimized-Laplacian Residual Interpolation 
that minimizes residual Laplacian energy between the 
reconstructed image and the raw image. However, any 
demosaicing process with a Bayer CFA causes artifacts in 
the areas that contain monochromatic edges and/or 
high-frequency components, since this CFA captures only 
one primary color per pixel and discards the information 
of the other two colors. 

Meanwhile, compressive sensing (CS) has recently 
been attracting a great deal of attention. Like the de-
mosaicing process, the target of CS is to solve  

   

   (a) Bayer CFA.   (b) Random   (c) Random RGB 

              complementary CFA      CFA. 
Fig. 1. Color filter arrays. 

 
Fig. 2. Proposed color imaging system. 

 

underdetermined problems. The key technology of CS is 
random projection [3], which is one of the optimal sam-
pling methods. Some imaging systems with random 
projection have been proposed, such as Random Pan-
chromatic CFA (RP CFA) [4], Digital Mirror Device [5], 
Fourier Optics [6], and Specialized Image Sensor [7]. 
However, these imaging systems have been impractical 
because they require either non-commercialized equip-
ment or drastic changes in the design of digital cameras.  

To overcome this problem, we propose a new color 
imaging system based on a compressive sensing tech-
nique. Our system consists of a random complementary 
CFA for random projection and a color reconstruction 
method for demosaicing. Our CFA overlaps two com-
plementary-color filters and consists of six color filters: 
cyan (C), yellow (Y), magenta (M), C+Y, C+M, and Y+M. 
By arranging these six color filters randomly (Fig. 1(b)), 
our imaging system achieves pseudo random projection 
among R/G/B colors. Because this CFA can retain more 
color information than RGB CFA, the proposed method 
reduces artifacts at monochromatic edges and in 
high-frequency regions, then obtains better image quality. 
This idea is similar to an RP CFA [4]. The advantage of 
this study is that our CFA is more commercialized than an 
RP CFA, because our CFA needs only three color filters, 
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whereas an RP CFA needs numerous color filters and too 
many processes for fabrication. 

As an additional contribution, we introduce saturation 
consistency [8] to reduce color artifacts which are caused 
by violation of an assumption for image reconstruction at 
saturation pixels. This technique factors the saturation 
phenomenon into new recovery algorithms via convex 
inequality constraints. 

Our contributions in this study are as follows. 
1. We propose a new color imaging system based on a 

compressive sensing technique. Our system consists of a 
random complementary CFA and a color reconstruction 
method. We achieve higher quality of reconstructed im-
ages than by RGB CFA in areas containing 
monochromatic edges and high-frequency components. 

2. The proposed imaging system is highly practical 
because all that is required to implement our system is to 
change a Bayer CFA to a random complementary CFA, 
which can be achieved through minor post-processing 
modifications to the image sensor during fabrication. 

3. Saturation consistency suppresses color artifacts in 
saturated areas, then leads to 3.3 dB higher quality images 
than the conventional method. 

2. Proposed Method 

In this section, we explain our proposed imaging sys-
tem based on a compressive sensing (CS) technique (Fig. 
2). Our color filters are randomly arranged pixel by pixel 
to achieve random projection among R/G/B colors. A 
color image is reconstructed from the captured raw image 
using CS technology. 

2.1.  Formulation of demosaicing and compres-
sive sensing using collaborative sparsity 

We explain an ideal solution for reconstructing a color 
image vector of size 3N as x and a given raw image vector 
of size N as y. A capturing process is formulated as the 
following equation. 

               Axy  ,                       (1) 
where A represents a sampling matrix. For a Bayer pattern 
CFA, the sampling matrix A enters one 1 for each row, 
while the other elements are zeros. 

Demosaicing serves to solve x from y. Evidently, there 
are infinitely possible values for x because the rank of A < 
3N. To obtain optimal images, CS introduces prior in-
formation that natural images have high sparsity in 
general. Zhang et al. [9] have formulated collaborative 
sparsity as the following constrained optimization prob-
lem. 

  
1

TVmin x
x

Θx   subject to Axy     (2) 

where 
1

  represents L1-norm and   denotes a reg-
ularization parameter. 

The former type of sparsity describes the total variation 
term, which is based on local two-dimensional sparsity of 
x [10, 11]. The latter one denotes non-local 
three-dimensional sparsity in a transform domain [12], 
which represents the self-similarity of natural images, 
while retaining the sharpness and edges effectively.  

The latter sparsity is defined as follows. 
1. Divide the image x into Nb overlapping blocks of size 

11 NN  , each block is denoted by
kx , i.e., k =1, ... , Nb. 

2. Define 
kxS as the set that includes the best-matching 

N2 blocks to kx in the 
SS NN  search window; that is, 

 221 ,,, Nxxx kkkk
SSS  xS . 

3. For every 
kxS , a group is formed by stacking the 

blocks belonging to 
kxS into a three-dimensional array, 

which is denoted by 
kxZ . 

4. Denote D3T the operator of a three-dimensional 
transformation and  

k

D
xZT 3  the transform coefficients 

for 
kxZ in domain 

DN3  [12]. Let xΘ be the column 
vector of size 

2b11 NNNNK   built from all of the 
 

k

D
xZT 3  arranged in lexicographic order.  

2.2.  Random complementary color filter array 

Random projection is known as an optimal sampling 
method for CS [3]. However, it has been impractical for 
imaging systems because it requires drastic changes in the 
design of digital cameras. To overcome this problem, our 
proposed color-imaging system introduces a random 
complementary CFA. General complementary CFAs 
consist of three color filters: C, Y, and M, which have 
wider bandwidths than the primary colors R, G, and B. 
Our color filter randomly overlaps two complemen-
tary-color filters and consists of six color filters: C, Y, M, 
C+Y, C+M and Y+M, as shown in Fig. 1(b). The random 
complementary CFA can be commercialized because it 
can be produced by making minor modifications to the 
color filter process used to fabricate image sensors. 

The sampling matrix A for the random complementary 
CFA is as follows. 
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where B is a random sampling matrix that indicates the 
arrangement of the six-color filter, and enters one 1 for 
each row, while the other elements are zeros. C is a color 
conversion matrix that indicates the relationship between 
the six color values 

MYMCYCMYC IIIIII  ,,,,,  and 
R/G/B values 

BGR III ,, . Because matrix A is the 
product of random sampling matrix B with conversion 
matrix C, it represents pseudo random projection. 

Note that (1) is not always satisfied because matrix C 
that is included in A is a linear approximation of the 
process to obtain a six-color filtered image from an RGB 
imagea. Therefore, we rewrite the cost function (2) as the 
following unconstrained optimization equation. 

 






 

1TV

2

2
TV

2

1
min x

x
ΘxyAx  ,     (4) 

where 
TV  and   denote regularization parameters. 

This cost function consists of three terms: a da-
ta-fidelity term, total variation term, and non-local 
sparsity term. The data-fidelity term is the difference 
between sampled reconstructed color images x and 
measurements vector y. 

                                                           
a We observed that, even if we use an ideal y and x (both of 

them is obtained from a 31-color multispectral image depicted 
in Fig. 3and the spectral properties shown in Fig.4), the max-
imum error between Ax and y reaches about 8 for 256 level 
(8-bit) images, because the spectral properties of the six-color 
filter are not obtained by a linear combination of RGB's. 
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2.3.  Saturation consistency 

In a real situation, a raw image of our system has some 
saturated pixels. In those pixels, the assumption of the 
data-fidelity term in (4) is violated, therefore the recon-
structed image has severe artifacts. To overcome this 
problem, we introduce a technique called “saturation 
consistency” [8]. Because we know that the real value of a 
saturated pixel is larger than the measured value, we 
modify the optimization equation in (4) into as follows. 

   








 1TVTV,min x
x

Θxxa 
i

i
T
iDF yf , (5) 

where ia is the transposed i-th row vector of matrix A ,

iy is the i-th element of raw image vector y, and 
)( DFf  stands for the saturation consistency operator 

as follows. 

 
 

,

if0

if

if
2

1

,

2




















S
T
iSi

S
T
iSi

Sii
T
i

ii
T

DF

ThandThy

ThandThy

Thyy

yf

xa

xa

xa

xa

  (6) 

where STh  is the value of a saturated pixel. If the raw 
image has no saturated pixels, cost function (5) is the 
same as (4).  

2.4.  Solution of the proposed method 

Although the cost function (5) is a convex problem, the 
optimization is not easy because none of its terms is dif-
ferentiable. We apply an algorithm called the “alternating 
direction method of multipliers (ADMM)” [13] to solve 
Eq. (5) efficiently. ADMM solves the convex optimiza-
tion problem by splitting it into smaller ones for variables 
vi and by partially minimizing them. 

Our algorithm is shown in Table 1, where 
DN3  is the 

inverse operator of 
DN3  (2D DCT and 1D Haar wavelet 

transform [12]), 
c  and  are parameters that depend on 

its convergence. 

3. Experimental Results 

In this section, we evaluate the performance of the 
proposed method. 

We compared our method with the ACPI and CS re-
construction methods which use two kinds of CFAs: 
Bayer CFA (Fig. 1(a)) and random RGB CFA (Fig. 1(c)). 
The value of a saturated pixel 

sTh in (6) is 255. To eval-
uate the performance of the proposed method, we obtain 
x and y using the 31-color multispectral image [14] de-
picted in Fig. 3 and the spectral properties of color filters 
shown in Fig. 4.  

The simulation results for Peak-Signal-to-Noise-Ratio 
(PSNR) of all reconstructed images are presented in Table 
2. Figure 5 depicts constructed images in the rectangular 
regions, which contain yellow edges and high-frequency 
texture in Fig. 3. These experimental results reveal the 
followings: 

1. The images reconstructed by the ACPI and CS with 
the Bayer CFA have artifacts for yellow edges without 
saturated pixels as shown in the top row of Fig. 5. In 
contrast, the proposed method reconstructs a high quality 
image with no artifacts. 

Table 1. Algorithm for the proposed method. 

 
2. RGB CFAs cannot reconstruct the texture with 

high-frequency components, which no pixels are satu-
rated, as shown in the bottom row of Fig. 5. In contrast, 
the proposed method preserves the texture and recon-
structs a higher quality image than conventional images. 

3. The proposed method with the saturation consistency 
suppresses color artifacts in saturated areas, then leads to 
3.3 dB higher quality images than one without the satu-
ration consistency. 

4. Conclusion 

In this study, we propose a new color imaging system 
based on a compressive sensing technique. Our system 
consists of a random complementary CFA which can be 
commercialized and a color reconstruction method. Our 
system achieves higher quality of reconstructed color 
images than with RGB CFA in areas containing mono-
chromatic edges and high-frequency components. 

In future work, we will evaluate real data and fabricate 
a prototype imaging system using the random comple-
mentary CFA. Furthermore, we will evaluate the 
sensitivity of our color filter because we believe that this 
is one of the advantages of our proposed method.  
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 x = u(k), return (x). 
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Table 2. Simulation Results. 

 Conventional Method Proposed method 

Condition 
Image Reconstruction Method ACPI CS CS CS CS 

CFA Bayer Random RGB Random Complementary 
Saturation Consistency - ✓ ✓ - ✓ 

PSNR 
[dB] 

Test Image 38.23 38.41 38.53 35.03 38.37 
Yellow Edge Area 42.51 42.53 47.46 47.80 48.07 

High-frequency Texture Area 36.93 36.17 35.03 38.33 39.56 

                                                          

                           
(a) Experimental test image.   (b) ACPI.         (c) Bayer CFA.    (d) Random RGB CFA.  (e) Proposed method. 

Fig. 5 Reconstructed images in yellow edge and high-frequency texture areas of Fig. 3. 
 

 

 

 

 

 

 

Fig. 3 Experimental test image. 

 

 

 

 

 

 

Fig. 4 Spectral properties. 
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