Compressive Color Sensing Using Random Complementary Color Filter Array

Satoshi Sato¹, Nobuhiko Wakai¹, Kunio Nobori¹, Takeo Azuma¹, Takamichi Miyata², Makoto Nakashizuka²

1. Advanced Research Division, Panasonic Corporation
3-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
{sato.satoshi,wakai.nobuihiko,nobori.kunio,azuma.takeo}@jp.panasonic.com,

2. Faculty of Engineering, Chiba Institute of Technology
2-17-1 Tsudanuma,Narashino, Chiba 275-0016, Japan
takamichi.miyata@it-chiba.ac.jp, nkszk@sky.it-chiba.ac.jp

Abstract

We propose a new color imaging system based on a compressive sensing technique. Our system consists of a random complementary color filter array (CFA) for random projection and a color reconstruction method for demosaicing. Our CFA overlaps two complementary color filters and consists of six color filters: cyan (C), yellow (Y), magenta (M), C+Y, C+M, and Y+M. By arranging these six color filters randomly, our imaging system achieves pseudo random projection among red (R) / green (G) / blue (B) colors, which is the key technology of compressive sensing. Because this CFA can retain more color information than RGB CFA, the proposed color reconstruction method reduces artifacts at monochromatic edges and in high-frequency regions, and obtains better image quality. As an additional contribution, we introduce saturation consistency to suppress color artifacts in saturated areas, then achieve to 3.3 dB higher quality images than the conventional method.

1. Introduction

Single-imager cameras, which use a color filter array (CFA) for color imaging, have become mainstream over the past decade. The most popular CFA is a Bayer pattern that consists of two green (G) filters, one red (R) filter, and one blue (B) filter of 2x2 pixels each, as illustrated in Fig. 1(a). In order to reconstruct a full color image from a raw image captured by this CFA, many demosaicing algorithms have been proposed. Hamilton and Adams [1] proposed Adaptive Color Plane Interpolation (ACPNI) that interpolates color using the correlation among color channels and the orientation of an edge. Kiku et al. [2] proposed Minimized-Laplacian Residual Interpolation that minimizes residual Laplacian energy between the reconstructed image and the raw image. However, any demosaicing process with a Bayer CFA causes artifacts in the areas that contain monochromatic edges and/or high-frequency components, since this CFA captures only one primary color per pixel and discards the information of the other two colors.

Meanwhile, compressive sensing (CS) has recently been attracting a great deal of attention. Like the demosaicing process, the target of CS is to solve underdetermined problems. The key technology of CS is random projection [3], which is one of the optimal sampling methods. Some imaging systems with random projection have been proposed, such as Random Panchromatic CFA (RP CFA) [4], Digital Mirror Device [5], Fourier Optics [6], and Specialized Image Sensor [7]. However, these imaging systems have been impractical because they require either non-commercialized equipment or drastic changes in the design of digital cameras.

To overcome this problem, we propose a new color imaging system based on a compressive sensing technique. Our system consists of a random complementary CFA for random projection and a color reconstruction method for demosaicing. Our CFA overlaps two complementary-color filters and consists of six color filters: cyan (C), yellow (Y), magenta (M), C+Y, C+M, and Y+M. By arranging these six color filters randomly (Fig. 1(b)), our imaging system achieves pseudo random projection among R/G/B colors. Because this CFA can retain more color information than RGB CFA, the proposed method reduces artifacts at monochromatic edges and in high-frequency regions, then obtains better image quality. This idea is similar to an RP CFA [4]. The advantage of this study is that our CFA is more commercialized than an RP CFA, because our CFA needs only three color filters,
whereas an RP CFA needs numerous color filters and too many processes for fabrication.

As an additional contribution, we introduce saturation consistency [8] to reduce color artifacts which are caused by violation of an assumption for image reconstruction at saturation pixels. This technique factors the saturation phenomenon into new recovery algorithms via convex inequality constraints.

Our contributions in this study are as follows.

1. We propose a new color imaging system based on a compressive sensing technique. Our system consists of a random complementary CFA and a color reconstruction method. We achieve higher quality of reconstructed images than by RGB CFA in areas containing monochromatic edges and high-frequency components.

2. The proposed imaging system is highly practical because all that is required to implement our system is to change a Bayer CFA to a random complementary CFA, which can be achieved through minor post-processing modifications to the image sensor during fabrication.

3. Saturation consistency suppresses color artifacts in saturated areas, then leads to 3.3 dB higher quality images than by RGB CFA in areas containing saturated pixels. This technique factors the saturation inconsistency [8] to reduce color artifacts which are caused by violation of an assumption for image reconstruction at saturation pixels. Written as the following constrained optimization problem.

\[
\min \| TV(x) + \alpha \Theta_z \|_1 \quad \text{subject to} \quad y = Ax
\]

where \(\| . \|_1 \) represents L1-norm and \(\alpha \) denotes a regularization parameter.

The former type of sparsity describes the total variation term, which is based on local two-dimensional sparsity of \(x \) [10, 11]. The latter one denotes non-local three-dimensional sparsity in a transform domain [12], which represents the self-similarity of natural images, while retaining the sharpness and edges effectively.

The latter sparsity is defined as follows.

1. Divide the image \(x \) into \(N \) overlapping blocks of size \(N \times N \), each block is denoted by \(x_k \), i.e., \(k = 1, \ldots, N \).

2. Define \(S_n \) as the set that includes the best-matching \(N \) blocks to \(x_k \) in the \(N \times N \) search window; that is, \(S_n = \{x_{n,0}, x_{n,1}, \ldots, x_{n,N-1}\} \).

3. For every \(S_n \), a group is formed by stacking the blocks belonging to \(S_n \) into a three-dimensional array, which is denoted by \(Z_n \).

4. Denote \(T^{10} \) the operator of a three-dimensional transformation and \(T^{10}(Z_n) \) the transform coefficients for \(Z_n \) in domain \(\Psi \) [12]. Let \(\Theta \) be the column vector of size \(K = N \times N \), \(N \) built from all of the \(T^{10}(Z_n) \) arranged in lexicographic order.

2.2. Random complementary color filter array

Random projection is known as an optimal sampling method for CS [3]. However, it has been impractical for imaging systems because it requires drastic changes in the design of digital cameras. To overcome this problem, our proposed color-imaging system introduces a random complementary CFA. General complementary CFAs consist of three color filters: C, Y, and M, which have wider bandwidths than the primary colors R, G, and B. Our color filter randomly overlaps two complementary CFAs and consists of six filters: C, Y, M, C+Y, C+M, and Y+M, as shown in Fig. 1(b). The random complementary CFA can be commercialized because it can be produced by making minor modifications to the color filter process used to fabricate image sensors.

The sampling matrix \(A \) for the random complementary CFA is as follows.

\[
A = BC, \quad [I_C \quad I_y \quad I_M \quad I_{C+Y} \quad I_{C+M} \quad I_{Y+M}] = C[I_g \quad I_g \quad I_g]
\]

where \(B \) is a random sampling matrix that indicates the arrangement of the six-color filter, and enters one for each row, while the other elements are zeros. \(C \) is a color conversion matrix that indicates the relationship between the six color values \(I_C, I_y, I_M, I_{C+Y}, I_{C+M}, I_{Y+M} \) and R/G/B values \(I_{r, g, b} \). Because matrix \(A \) is the product of random sampling matrix \(B \) with conversion matrix \(C \), it represents pseudo random projection.

Note that (1) is not always satisfied because matrix \(C \) that is included in \(A \) is a linear approximation of the process to obtain a six-color filtered image from an RGB image. Therefore, we rewrite the cost function (2) as the following unconstrained optimization equation.

\[
\min_x \left\{ \frac{1}{2} \| A x - y \|^2 + \tau_{TV} TV(x) + \alpha \| \Theta_z \|_1 \right\}.
\]

where \(\tau_{TV} \) and \(\alpha \) denote regularization parameters.

This cost function consists of three terms: a data-fidelity term, total variation term, and non-local sparsity term. The data-fidelity term is the difference between sampled reconstructed color images \(x \) and measurements vector \(y \).

\[\text{We observed that, even if we use an ideal } y \text{ and } x \text{ (both of them is obtained from a 31-color multispectral image depicted in Fig. 3 and the spectral properties shown in Fig. 4), the maximum error between } Ax \text{ and } y \text{ reaches about 8 for 256 level (8-bit) images, because the spectral properties of the six-color filter are not obtained by a linear combination of RGB's.} \]
2.3. Saturation consistency

In a real situation, a raw image of our system has some saturated pixels. In those pixels, the assumption of the data-fidelity term in (4) is violated, therefore the reconstructed image has severe artifacts. To overcome this problem, we introduce a technique called “saturation consistency” [8]. Because we know that the real value of a saturated pixel is larger than the measured value, we modify the optimization equation in (4) into as follows.

\[
\min_x \left\{ \sum_i f_{DF}(a_i^T x, y_i) + \tau_{TV} TV(x) + \epsilon \| \Theta x \|_1 \right\},
\]

where \(a_i \) is the transposed \(i \)-th row vector of matrix \(A \), \(y_i \) is the \(i \)-th element of raw image vector \(y \), and \(f_{DF}(\cdot) \) stands for the saturation consistency operator as follows.

\[
f_{DC}(a^T x, y) = \begin{cases} \frac{1}{2} \| a \|^2 & \text{if } y < T_h \, a^T x \leq T_h, \\ \infty & \text{if } y \geq T_h \, a^T x \leq T_h, \\ 0 & \text{if } y \geq T_h \, a^T x > T_h, \\ \end{cases}
\]

where \(T_h \) is the value of a saturated pixel. If the raw image has no saturated pixels, cost function (5) is the same as (4).

2.4. Solution of the proposed method

Although the cost function (5) is a convex problem, the optimization is not easy because none of its terms is differentiable. We apply an algorithm called the “alternating direction method of multipliers (ADMM)” [18] to solve Eq. (5) efficiently. ADMM solves the convex optimization problem by splitting it into smaller ones for variables \(\mathbf{v} \) and by partially minimizing them.

Our algorithm is shown in Table 1, where \(\Omega_{2D} \) is the inverse operator of \(\Phi_2 \) (2D DCT and 1D Haar wavelet transform [12]), \(\tau \) and \(\mu \) are parameters that depend on its convergence.

<table>
<thead>
<tr>
<th>Table 1. Algorithm for the proposed method.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization: (\mathbf{v}^{(0)} = d^{(0)} = \mathbf{0}, \quad i = 1, 2, 3, \quad \mathbf{p}^{(0)} = \mathbf{0}, \quad k = 0.)</td>
</tr>
<tr>
<td>Repeat:</td>
</tr>
<tr>
<td>(\mathbf{u}^{(k+i)} = { \mathbf{v}^{(k+i)} + \mathbf{d}^{(k+i)} + \mathbf{y}^{(k+i)} + \mathbf{d}^{(k+i)} } / 3.)</td>
</tr>
<tr>
<td>else</td>
</tr>
<tr>
<td>(\mathbf{v}^{(k+i)} = \mathbf{u}^{(k+i)} - \mathbf{d}^{(k+i)} + m: \mathbf{a}_i,)</td>
</tr>
<tr>
<td>(m = \begin{cases} 0 & \text{if } \mathbf{a}_i^T (\mathbf{u}^{(k+i)} - \mathbf{d}^{(k+i)}) \geq y_i, \ \mathbf{p} & \text{else} \end{cases})</td>
</tr>
<tr>
<td>end if</td>
</tr>
<tr>
<td>end if</td>
</tr>
<tr>
<td>**v_1^{(k+i)} = \operatorname{arg min}_{\mathbf{v}_1} \left{ \mathbf{v}_1 - \mathbf{g}^{(k+i)} \right}^2 / 2(\lambda + TV(\mathbf{v}_1)))</td>
</tr>
<tr>
<td>(= \mathbf{g}^{(k+i)} - \lambda \cdot \operatorname{div} \mathbf{p}^{(k+i)})</td>
</tr>
<tr>
<td>(\mathbf{g}^{(k+i)} = \mathbf{u}^{(k+i)} - \mathbf{d}^{(k+i)})</td>
</tr>
<tr>
<td>(\lambda = \tau_{TV} / \mu)</td>
</tr>
<tr>
<td>(\mathbf{p}^{(k+i)} = \mathbf{p}^{(k+i)} + \lambda \operatorname{div} \mathbf{p}^{(k+i)} - \mathbf{g}^{(k+i)} /</td>
</tr>
<tr>
<td>(\mathbf{v}2^{(k+i)} = \operatorname{arg min}{\mathbf{v}_2} \left{ \mathbf{v}_2 - \mathbf{g}^{(k+i)} \right}^2 / 2(\lambda + TV(\mathbf{v}_2)))</td>
</tr>
<tr>
<td>**v_3^{(k+i)} = \operatorname{arg min}_{\mathbf{v}_3} \left{ \mathbf{v}_3 - \mathbf{r}^{(k+i)} \right}^2 / \left(\frac{\gamma}{\mu}</td>
</tr>
<tr>
<td>(= \Omega_{3D} \Sigma (\mathbf{\Theta}_{\rho, \gamma}))</td>
</tr>
<tr>
<td>(\mathbf{r}^{(k+i)} = \mathbf{u}^{(k+i)} - \mathbf{d}^{(k+i)})</td>
</tr>
<tr>
<td>(\mathbf{d}^{(k+i)} = \mathbf{d}^{(k+i)} - \mathbf{v}^{(k+i)}, \quad i = 1, 2, 3.)</td>
</tr>
<tr>
<td>Update iteration: (k \leftarrow k+1.)</td>
</tr>
<tr>
<td>Until some stopping criterion is satisfied.</td>
</tr>
<tr>
<td>(\mathbf{x} = \mathbf{u}^{(k)}, \text{ return } (x).)</td>
</tr>
</tbody>
</table>

2. RGB CFAs cannot reconstruct the texture with high-frequency components, which no pixels are saturated, as shown in the bottom row of Fig. 5. In contrast, the proposed method preserves the texture and reconstructs a higher quality image than conventional images.

3. The proposed method with the saturation consistency suppresses color artifacts in saturated areas, then leads to 3.3 dB higher quality images than one without the saturation consistency.

3. Experimental Results

In this section, we evaluate the performance of the proposed method.

We compared our method with the ACPI and CS reconstruction methods which use two kinds of CFAs: Bayer CFA (Fig. 1(a)) and random RGB CFA (Fig. 1(c)). The value of a saturated pixel \(T_h \) in (6) is 255. To evaluate the performance of the proposed method, we obtain \(\mathbf{x} \) and \(\mathbf{y} \) using the 31-color multispectral image [14] depicted in Fig. 3 and the spectral properties of color filters shown in Fig. 4.

The simulation results for Peak-Signal-to-Noise-Ratio (PSNR) of all reconstructed images are presented in Table 2. Figure 5 depicts constructed images in the rectangular regions, which contain yellow edges and high-frequency texture in Fig. 3. These experimental results reveal the followings:

1. The images reconstructed by the ACPI and CS with the Bayer CFA have artifacts for yellow edges without saturated pixels as shown in the top row of Fig. 5. In contrast, the proposed method reconstructs a high quality image with no artifacts.
Table 2. Simulation Results.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Image Reconstruction Method</th>
<th>Conventional Method</th>
<th>Proposed method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACPI</td>
<td>CS</td>
<td>CS</td>
</tr>
<tr>
<td>PSNR [dB]</td>
<td>Test Image</td>
<td>38.23</td>
<td>38.41</td>
</tr>
<tr>
<td></td>
<td>Yellow Edge Area</td>
<td>42.51</td>
<td>42.53</td>
</tr>
<tr>
<td></td>
<td>High-frequency Texture Area</td>
<td>36.93</td>
<td>36.17</td>
</tr>
</tbody>
</table>

(a) Experimental test image. (b) ACPI. (c) Bayer CFA. (d) Random RGB CFA. (e) Proposed method.

Fig. 5 Reconstructed images in yellow edge and high-frequency texture areas of Fig. 3.

Fig. 3 Experimental test image.

Fig. 4 Spectral properties.

References