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Abstract

The reconstruction of the 3D world from camera im-
ages has a tradition of over 100 years. Nevertheless, we
have witnessed over the last few years a dramatic boost
in performance of reconstruction algorithms. An im-
portant innovation underlying this performance boost
is the development of direct methods to estimate the
3D structure and the camera motion. Some of these
developments shall be reviewed in the following.

1 Introduction

More than 100 years ago, researchers in the field of
photogrammetry studied the problem of reconstruct-
ing the 3D world from multiple photographs. In 1913,
the Austrian mathematician Erwin Kruppa [12] proved
that given five corresponding point pairs observed in
two images, one can recover the camera motion and
the 3D point coordinates up to finitely many solutions.
This and similar works paved the way for the develop-
ment of computer vision algorithms to tackle the so-
called structure-and-motion problem (later often called
visual SLAM), culminating in algorithms like the lin-
ear 8-point algorithm [13] or the 5-point algorithm [15].
The first real-time capable algorithms appeared in the
early 2000’s [1, 3, 16, 10].

While Kruppa’s work was undoubtedly pioneering
for the field of image-based 3D reconstruction, it may
also have been highly misleading as the key assump-
tions underlying Kruppa’s work are typically not ful-
filled in applications of camera-based reconstruction:

• When switching on a camera, we typically do not
observe a sparse set of points but rather a sheer
endless amount of colors. How to optimally select
a sparse subset of points out of these is far from
obvious and has been tried with numerous (often
heuristically motivated) keypoint detectors. Al-
gorithms which then solely use the respective key-
points will invariably be suboptimal because they
do not exploit all available sensor data.

• Even after selecting points in respective images,
these points are not in correspondence. Com-
puting this correspondence – essentially the prob-
lem of optical flow estimation – is a classical ill-
posed problem and one of the nastiest compu-
tational challenges in computer vision. While
there exist numerous algorithms and strategies
such as Ransac to determine this point correspon-
dence, respective solutions are invariably subop-
timal. Obviously errors in this point correspon-
dence will propagate to errors in the reconstruc-
tion in a more or less benign manner depending
on the choice of cost function.

In recent years, we have witnessed a surge of so-
called direct methods for 3D reconstruction and visual
SLAM. Some of these developments shall be sketched
in the following.

2 Direct Methods for Dense Geometric Re-
construction

While the estimation of dense correspondence is a
difficult computational challenge (respective spatially
discrete formulations being NP hard), for a given set
of camera locations and orientations one can tackle the
problem of dense geometric reconstruction without ex-
plicitly computing correspondence: For any voxel in
the reconstruction volume V ⊂ R3, one can determine
a value of photoconsistency ρ : V → [0, 1], which takes
on small values if the projection of that voxel into var-
ious cameras gives rise to a consistent color (or local
texture) and large values for voxels which give rise to
very different color (or local texture). Subsequently,
one can compute an optimally photoconsistent surface
S by minimizing the photoconsistency-weighted sur-
face area

min
S

∫
S

ρ(s) dA(s), (1)

where dA(s) denotes the surface area element located
at point s ∈ S. In their pioneering paper [9], Faugeras
and Keriven suggested to minimize such functionals
by means of level set methods thereby computing
a spatially dense locally optimal reconstruction. A
more generative formulation (modeling foreground and
background colors) which can be interpreted was a
silhouette-based dense reconstruction was proposed by
Yezzi and Soatto in [22].

While such locally optimal solutions are often highly
dependent on the initialization (in particular with re-
spect to topology of the reconstructed object), later
works of Kolev and coworkers [11] showed that prov-
ably optimal solutions for functionals of form (1) – in
combination with suitably defined unary terms, since
the optimum of (1) is obviously the empty set – can
be computed by means of convex relaxation methods.
This framework was later extended to computing prov-
ably silhouette-consistent reconstructions [2] and to
computing spatio-temporal reconstructions [17]. The
key practical implication of these convexifications is
that the computed solutions are independent of the
choice of initialization and either provably optimal or
within a computable bound of the optimum. As evi-
dent from the results in Figure 1, these purely camera-
based dense reconstructions are at a level of precision
where the entire rope of the rope-jumping girl can be
reconstructed.

While the computation of spatially dense volumet-
ric reconstruction is typically time-consuming – the re-
constructions in Figure 1, for example, took around 3
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Figure 1. Reconstruction of spatio-temporal actions from multiple synchronized videos using convex relax-
ation methods [17]. In contrast to local optimization techniques, the convex relaxation methods provide
solutions that are independent of initialization and either provably optimal or within computable bounds of
the optimum. Input video data is courtesy of http://4drepository.inrialpes.fr.

Figure 2. Real-time dense reconstruction from a handheld camera computed using a variational methods
[19]. A multiple-view data term is combined with a smoothness regularizer which creates a geometric fill-in
effect in locations of lacking observations, for example at object boundaries. The resulting solutions are
reminiscent of a soap film settling over the observed 3D scene.

minutes per time step on a high-performance GPU –
for many applications such as driver assistance and
autonomous robots one may want to compute spa-
tially dense reconstructions in realtime. One of the
first dense reconstruction in realtime was proposed by
Stuehmer and coworkers who suggested to compute a
dense depth map u : Ω→ R on the image plane Ω ⊂ R2

by minimizing the functional

min
u

n∑
i=1

∫ ∣∣I1(x)−Ii(π gi ux)
∣∣ dx + λ

∫
|∇u| dx, (2)

where x is given in homogeneous coordinates (such
that ux is the corresponding 3D coordinate) and gi ∈
SE(3) is the rigid body motion between camera 1 and
camera i . The total variation regularizer on u creates
a geometric fill-in effect in locations of lacking obser-
vation (for example at object boundaries) – see Figure
2. Conceptually related approaches were subsequently
published in [18] and [21].

3 Direct Tracking and Mapping (DTAM)

The work [18] tackles the joint problem of cam-
era motion estimation and structure reconstruction
by means of a direct method, i.e. without computing
feature points and correspondence (using the feature
point based method PTAM only for initialization). As
apparent from equation (2) the central idea underlying

these direct methods is the notion of image alignment:
Rather than minimizing a geometric error (as done for
example in bundle adjustment) the goal is to minimize
a photometric error of color or brightness consistency.
Yet, rather than in optical flow estimation one does not
compute a 2D correspondence field but rather directly
the geometry u.

4 Large-Scale Direct (LSD) SLAM

Engel and coworkers [5] proposed a direct method to
compute a semi-dense geometry and the camera mo-
tion in real-time on a simple laptop CPU (rather than
requiring GPUs as in [18]). In a follow-up publication
[4], Engel et al. introduced the notion of pose graph
optimization in order to carry the visual SLAM algo-
rithm to a large scale capability. The key idea of this
technique (adopted from laser-based approaches) is to
compute (in parallel to the camera motion g̃ij ∈ SE(3)
estimated by alignment of images i and j) a globally
consistent camera trajectory gi ∈ SE(3) by minizing
the nonlinear least squares problem

min
g1,...,gn

∑
i∼j

d(g̃ij , gi ◦ gj), (3)

with a suitably chosen metric d(·, ·) which imposes con-
sistency of the respective rigid body motions. Figure 3
shows examples of large-scale reconstructions obtained
with this method.
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Figure 3. Real-time reconstruction of camera trajectory and environment computed on a laptop CPU using
a stereo-version of Large-Scale Direct (LSD) SLAM [7, 20]. In contrast to the monocular version of LSD
SLAM [4], the stereo version has several advantages: Firstly, the stereo version can recover reconstructions
at scale since the baseline between the two cameras is known. Secondly, the additional information from
static stereo facilitates the initialization and increases robustness and accuracy.

5 Direct Sparse Odometry

The main difference between keypoint-based ap-
proaches and direct approaches to visual SLAM is
that in keypoint-based methods the overall problem
is split into two consecutive steps – namely extract-
ing and matching keypoints and (subsequently) solv-
ing the structure and motion or SLAM problem. In
contrast, direct methods tackle the overall problem in
a single step. The cost functions used for the SLAM
computation therefore differ: In keypoint-based meth-
ods the cost measures a geometric reprojection error of
respective 3D points projected into respective images.
In contrast, in direct methods the cost underlying the
SLAM computation corresponds to a photometric er-
ror of imposing color or brightness consistency across
all images – see equation (2). As a consequence, direct
methods model directly the image formation process
and the sensor measurements (colors).

An immediate advantage of direct methods is that
the cost function to be optimized can be designed to ac-
curately encode the image formation process. In fact,
if one studies real-world cameras one comes to realize
that the brightness of 3D points observed in multiple
images is by no means constant, even for Lambertian
objects. The brightness measured in a given pixel de-
pends on numerous aspects, including the camera aper-
ture, the vignette and the gamma correction.

Engel and coworkers [6] precisely modeled this
brightness transformation and computed a pixel-
accurate vignette. In addition the made use of a
marginalization strategy to take into account the older
image observations. The resulting algorithm called Di-
rect Sparse Odometry leads to highly accurate point-
clouds and camera tracks with nearly no drift or distor-
tion – see Figure 4. These are be computed in real-time
from a handheld moving camera.

A systematic quantitative evaluation of Direct
Sparse Odometry to ORB SLAM [14], a state-of-the-
art keypoint based visual SLAM algorithm shows a
drastic improvement in robustness and accuracy – see
Figure 5.

6 Conclusion

We have reviewed a number of recent developments
in real-time structure and motion, often referred to as
real-time visual simultaneous localization and mapping
(visual SLAM). In particular, we focussed on the de-
velopment direct methods. These differ from the more
traditional keypoint based methods in that they do not
separate the two steps of point correspondence estima-
tion and SLAM, but rather solve both problems di-
rectly by minimizing a photoconsistency error (rather
than a geometric reprojection error). Based on this
more direct modeling of the sensory measurements (the
colors or brightnesses of pixels), they can directly in-
corporate accurate models of the image formation pro-
cess, including aspects such as lens attenuation (vi-
gnetting), exposure time and gamma correction. As a
result, this replaces the classical “brightness constancy
assumption” to an “irradiance constancy assumption”,
i.e. the light emmitted (!) from a given 3D point is as-
sumed to be constant and direction-independent.

This direct modeling of the sensory measurements
and the image formation process gives rise to substan-
tial improvements of visual SLAM algorithms, both
with respect to accuracy and with respect to robust-
ness. As a consequence, they can be deployed in chal-
lenging real-world scenarios to map large-scale environ-
ments (entire street passages) and determine a highly-
accurate and nearly drift-free camera trajectory. We
believe that these direct visual SLAM algorithms will
form core ingredients for many technologies such as
smart-phone applications, self-driving cars and other
robotic systems.
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